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Abstract

The one-dimensional homonuclear periodic array of nuclear spins I = 1/2, owing

to hyperfine interaction of nuclear spins with electronic magnetic moments in anti-

ferromagnetic structure, is considered. The neighbor nuclear spins in such array are

opposite oriented and have resonant frequencies determined by hyperfine interaction

constant, applied magnetic field value and interaction with the left and right nuclear

neighbor spins. The resonant frequencies difference of nuclear spins, when the neighbor

spins have different and the same states, is used to control the spin dynamics by means

of selective resonant RF-pulses both for single nuclear spins and for ensemble of nuclear

spins with the same resonant frequency.

A model for the NMR quantum computer of cellular-automata type based on an

one-dimensional homonuclear periodic array of spins is proposed. This model may

be generalized to a large ensemble of parallel working one-dimensional arrays and to

two-dimensional and three-dimensional structures.

Introduction

The fundamental obstacle, preventing experimentalists from extending the number of qubits
to L � 1 in an individual molecule of the liquid-state NMR quantum computer, is the
difficulty of distinguishing L unique set of two-state cells. To remove this obstacle it was
already proposed several models for solid-state quantum computers with both individual

and ensemble control of qubits. One of such potentially realizable model based on a one-
dimensional cellular automaton, using an one-dimensional periodic array ABCABC. . . of
three types of two-state quantum-mechanical cells (they may be heteronuclear system of spins
I = 1/2) with distinct resonant frequencies and local interaction between near neighbors,
was first considered by S.Lloyd [1]. The effect of the interaction contains in a shift of the each
cell energy levels depending on states of its neighbors. After using the resonant π−pulse all
cells of type A, for instance, invert their state if, and only if, the left neighbor C is in ground
state and the B on its right is in excited state. In [1], it was represented algorithm, which
was applied globally to all cells, so that there is no need to address cells individually. This
model was recently developed by S.Lloyd [2].
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The more general model of a solid state ensemble NMR quantum computer was described
in [3], where it was considered periodic structure of ABCABCABC. . . type in two or three
dimensions with the nuclear spins 1/2 only of three distinguish types A, B, C. It was supposed
that the nuclei are embedded in a crystal lattice of some solid state compound with spinless
nuclei and all spins are initialized to the ground state |0〉. Each ABC-unit of this superlattice
can be used to store quantum information by setting one of spin up or down. This information
can be moved around via some quantum cellular state shifting mechanism. Cascading unitary

quantum SWAP operations of A ⇔ B, B ⇔ C, C ⇔ A, A ⇔ B,. . . is used for this process.
An ancillary dopand nucleus D with spin 1/2 in the proximity of an A-site can serve as
the input/output port. A local environment region near dopand nucleus provides a large
quantum system with a wealth of qubits and only three types of nuclear spins. Therefore
impurity doping may induce large-scale quantum automata in a single crystal and the whole
crystal contains a huge ensemble of such identical NMR quantum computers — large artificial
”molecules”.

One-dimensional scheme that was based only on two different A and B types of cell in a
periodic array without the ability to distinguish the left neighbor from the right was described
in [4]. Each two-state cell of the scheme has ground | ↓〉 and excited | ↑〉 internal eigenstates
and can represent any quantum superposition of these states. All cells are initially in the
same ground states | ↓〉 and the state of the all array is | ↓

A

↓
B

↓
A

. . . ↓〉, similar to an one-

dimensional two-sublattice ferromagnetic. Each qubit of quantum information in the state
is represented by four consecutive units: the qubit basis state ”0” is represented by unit
| ↑

A

↑
B

↓
A

↓
B

〉, whilst the state ”1” is represented by | ↓
A

↓
B

↑
A

↑
B

〉.
The model of array described below could be realized by using a linear artificial ”molecule”

with A and B cells alternating along its length in antiferromagnetic-type structure. As the
cells in this array are used only identical nuclear spins I = 1/2. The neighbor nuclear spins
in the ground state of antiferromagnetic structure are opposite orientated and have distinct
resonant frequencies determined by hyperfine interaction constant, by applied magnetic field
value and by interaction with the left and right nuclear neighbor spins. The major advantage
of this variant over the ferromagnetic structure is that the antiferromagnet doesn’t have the
total spontaneous magnetization and the nuclear resonance frequency doesn’t depend on the
sample shape.

1 The one-dimensional antiferromagnetic model on

atoms 31P.

In [5, 6] it was suggested a bulk-ensemble generalization of the silicon quantum computer
model proposed by Kane previously [7]. In ensemble case, unlike the individual Kane’s
model, two-type electrodes A and J form a set of narrow (lA ∼ 10 nm) and long (several
micrometers) strips. The distance between neighbors A gates was assumed lx ∼ lA. Along
the gates A, donor 31P atoms ly distant from each other are placed. If exchange interaction
constant for localized electronic spins along the strip gates is more than for electronic spins
between neighboring strips and more than Zeeman energy J(ly) � J(lx), 2µBB (B is the
induction of the applied magnetic field), it produces an artificial one-dimensional antiferro-
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magnetically ordered state of electronic spins. At the temperatures well below the critical
temperature (Neel temperature) TNS ∼ J(ly)/k (k — the Boltzmann constant) we will have
a pure macroscopic electronic ground quantum state. Due to hyperfine interaction nuclear
spins will be oriented according to the electronic spin direction in the resultant field and
will form array with the alternating orientation of nuclear spins. Note, this state is not the
true pure nuclear antiferromagnetic state so as long as the phases of distinct nuclear spins
at macroscopic distances are not correlated at temperature of order or higher then critical
temperature of nuclear magnetic dipole ordering, that is T > TNI ∼ (10−6 − 10−7)K [8].
However, the phase correlations of near neighbor nuclear spins of course exist.

The nuclear resonant frequencies νA,B of neighbor nuclear spins are different for each
of the magnetic quasi-one-dimensional subarrays A and B in the chain and depend on the
states of neighboring spins. We will take it in the form:

νA,B(m< +m>) ≈ |gNµNB ± A/2 − In(m< +m>)|/2πh̄, (1)

where µN = 5.05 · 10−27 J/T is the nuclear magneton, A is hyperfine interaction constant,
(for 31P: gN = 2.26, A = 7.76 · 10−26 J), In — the constant of two neighbor nuclear indirect
spin-spin interaction, m< and m> are the magnetic quantum numbers for the left and right
spins. The nonsecular part of interaction is neglected here taking in to account that gNµNB,
A/2 � In.

Thus we have the one-dimensional homonuclear periodic array of nuclear spins I =
1/2, formed in the one-dimensional antiferromagnet at the applied magnetic field, owing to
hyperfine interaction of nuclear spins with the electronic magnetic moments. At magnetic
fields B ≥ A/2gNµN ∼ 3.5 T and at temperatures T ∼ 10−3 K the nuclear spins 31P have in
each subarray almost 100% orientation (2πh̄νA,B/kT ≤ 1), that is they are in ground state.
Note, that the using of dynamic methods, such as optical pumping, makes possible the high
orientation of nuclear spins also at more large temperatures.

We will estimate here the exchange interaction constant J > 2µBB ∼ 6.5 · 10−23 J, the
critical temperature TNS ∼ J/k ∼ 4.5 K and the nuclear spin critical temperature, that is due
mainly to the Suhl-Nakamura indirect spin-spin interaction, TNI ∼ In/k ∼ A2/Jk ∼ 10−5 K.

Here we shall use for the organization of logic operations the addressing to spin states and
qubits, analogously to consideration [4]. We shall consider at first the simple one-dimensional
model of the antiferromagnet, in which each cell is represented by the magnetic atom and has
one electronic and one nuclear spin 1/2 with hyperfine interaction, similar to the mentioned
above artificial molecule of antiferromagnetically ordered donors 31P in silicon substrate.

Nuclear spins of identical atoms at gNµNB < A/2 are oriented according to the electronic
spin direction in the resultant field and will form a periodic ground state array of ABAB. . .
type: ↑↓↑↓ . . ., where ↑ marks the ground state of nuclear spin in an A-site and ↓ — the
ground state of nuclear spin in a B-site, that is we have here homonuclear system of spins

at two distinct ground states. Each nuclear spin in A-site of this scheme, has two internal
eigenstates — ground | ↑〉 and excited | ⇓〉 and in B-site, accordingly, — | ↓〉 and | ⇑〉. We
take into account that the life time (the longitudinal or spin-lattice relaxation time T1) of
excited states at low temperatures is very long. Each qubit of quantum information in this
state will be represented here, similar to [4], by the four consecutive cells: the logical qubit
basis state ”0” will be represented by unit | ⇓⇑↑↓〉, whilst the state ”1” — by | ↑↓⇓⇑〉. It
is important here that the resonant frequencies of nuclear spins depend on neighbor spins
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states.
The input and output of the information in the array of ground states spins could be

performed at the ends of the array, where the nuclear spin (say in A-site at the left end) has
only one neighbor spin and distinguishing resonant frequency νA,−1/2 (m< + m> = −1/2).
The corresponding selective resonance RF πA,−1/2−pulse inverts only one nuclear spin (in
A-site) at the end of array and doesn’t influence on any ones. Then the new selective RF
πB,0−pulse will invert next nuclear spin (in B-site), which has the opposite orientation of
ground and exited neighbor nuclear spins (m< + m> = 0 in A-site) and consequently the
new resonant frequency, distinguished from the frequency of spins with the neighbor nuclear
spin in ground states (m< +m> = 1). Thus the qubit state ”0”, that is | ⇓⇑↑↓〉, is formed
in the following way (the pulses act on underlined spins):

↑
−

↓
B

↑
A

↓
B

↑ . . . πA,−1/2−pulse⇒ ⇓
A

↓
−

↑
A

↓
B

↑ . . . πB,0−pulse⇒
”0”

⇓
A

⇑
B

↑
A

↓
B

↑ . . .

The qubit state ”1” at the edge of array is formed by means of still three pulses: at first
πA,0, then πA,−1/2 and πB,0−pulses:

⇓
A

⇑
B

↑
−

↓
B

↑ . . . πA,0−pulse⇒ ↓
−

⇑↓
−

↓
−

↑ . . . πA,−1/2−pulse⇒ ↑ ⇑
−

⇓↓
−

↑ . . .

πB,0−pulse⇒
”1”

↑
A

↓
B

⇓
A

⇑
B

↑ . . .

The states |⇑⇓↓↑〉 and |↓↑⇑⇓〉 may be called as the reversed states relative to the states

|↑↓⇓⇑〉 and |⇓⇑↑↓〉.
Note that a random inversion of only one spin will result in completely destruction of the

qubit. However, to form, for example, the error of ”0” ⇒ ”1” type in the coding of stored
quantum information it is essential to invert simultaneously four spins. Therefore, it may
be concluded that the considered way of qubit coding ensures a better fault-tolerance with
respect to this type of errors.

Authors of [9] have considered also another scheme of the four-spin encoding two logical
qubits, which are represented by the two zero-total states of four spins, generated by the pairs
respectively of the singlet and triplet states. This scheme leads in the collective decoherence
conditions to the fault-tolerant implementation of quantum computations. The collective
decoherence conditions can be attained in coupled spins at very low temperatures, where all
collective but the longest wavelength acoustic phonon modes are quenched.

The further shift-loading of qubit states into the array is implemented by means of pulse
sequence πA,0, πB,0, πA,0, πB,0 . . ., which is represented by following SWAP operation:

”1”

↑
A

↓
B

↓
−

⇑
B

↑ . . . πA,0−pulse⇒ ↑ ↓↑⇑↓
−

↓ . . . πB,0−pulse⇒ ↑↓ ↑↓↓
−

⇑ . . . πA,0−pulse⇒

⇒ ↑↓↑ ↓↑⇑
−

⇓ ↓
−

. . .
πB,0−pulse⇒ ↑↓↑↓

”1”

↑
A

↓
B

⇓
A

⇑
B

↑↓↑↓ . . .

and so on.
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The role of the atoms at array ends can play here, as it was discussed in [3], also dopand
nuclei D at the certain place of the array with distinct resonant frequency or a defect that
modifies the resonant frequency of the nearest nuclear spin in the array. Starting from the
perfectly initialized states inputting the information can be performed by setting the dopant
D-spin to desired state by means of pulse at his resonant frequency. The nuclear spin state
of cell nearest to the dopand is created by SWAP operation mentioned above. After the
required information is loaded, D-spin is reset to the ground state |0〉. Upon completion of
computation, the state of any qubits can be measured by moving it to the A-site nearest to
D, then swapping A⇔ D and finally measuring the state of D-spin.

2 One-qubit operations in one dimension

As in [4], we introduce still πA,1 and πB,−1−pulses and operators UA,1 and UB,−1. The last
means, that each spin in A- and B-site is subjected to a unitary transform U, which acts on
spins in A- and B-sites with resonant frequency corresponding to the both neighbor nuclear
spin in the same excited states (m< + m> = ±1, sign ”+” is for excited neighbor spins in
B-sites | ⇑〉, and sign ”−” — for A-sites | ⇓〉, see Table). Note, that when operator U is a
simple inversion, the actions of UA,1 and UB,−1 are identical to πA,1 and πB,−1−pulse.

Table. The π−pulses for spins in A- and B-sites

Neighbor spin states. A-site ↑
A

↓ ↓↑
A

↓ ↓↑
A

⇑ ⇑↑
A

↓ ⇑↑
A

⇑
Resonance frequency νA(−1/2) νA(−1) νA(0) νA(0) νA(1)
π−pulses πA,−1/2 πA,−1 πA,0 πA,0 πA,1

Neighbor spin states. B-site ↓
B

↑ ↑↓
B

↑ ↑↓
B

⇓ ⇓↓
B

↑ ⇓↓
B

⇓
Resonance frequency νB(1/2) νB(1) νB(0) νB(0) νB(−1)
π−pulses πB,1/2 πB,1 πB,0 πB,0 πB,−1

Let us construct now the logical gates of quantum computer. At first we shall investigate
at first the scheme for one-qubit gate. The considered section of the array (Fig. 1) contains
three qubits in states ”1”, ”0” and ”1”, each being separated by number multiple four of
spacer cells -nuclear spins in ground state. Therefore each qubit requires a total of eight
physical spins in the array (four for the encoding plus four spacers) (Fig. 1). As it was made
in [1, 4], we will also introduce here one control unit, (not to be confused with control qubit

in case of CNOT gates), which is represented here by six consecutive cells in the pattern

⇑⇓↓↑⇑⇓. The control unit (CU) exists only in one place along the array and is separated by
odd number of spacer cells — spins (the scheme at Fig. 1 has three).
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Fig. 1. The scheme of the SWAP update pulse sequence.

The applying SWAP update sequence of pulses πA,0, πB,0, πA,0, πB,0, πA,0 . . . moves the
qubits to the right and CU to the left relative to the qubits, yet the form of the qubits
and the CU are preserved. The CU passes through qubit in state ”1” and ”0”, leaving it
unchanged and continues further (Fig. 1).

To implement the one-qubit logical gate the additional computing updates six pulse
sequence πA1, πB1, πB0, πA1, πB0, UA,1 is applied when CU reaches the mid-way through
passing the qubit Y (”1” or ”0”, marked * and ** at Fig. 1). The effect of the additional
sequence is to apply a unitary transform U only to the spin representing the qubit Y: t = UY
(Fig. 2). The scheme of the additional computing update pulse sequence after stage * is
shown at Fig. 2. The scheme of sequence after stage ** is shown in Appendix A1.
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Fig. 2. The scheme of the additional computing update pulse sequence after stage ∗

Let us take now the one-cell unitary operation at the end of additional sequence:

UA,1| ↑〉 = a| ↑〉 + b| ⇓〉, |a|2 + |b|2 = 1. (2)

Re-applying the update pulses after unitary operation in reverse order the CU moves
away from transformed cell and is returned to its initial state (see Appendix A2). We will
have in the result the superposition of states:

|ψ〉 = a|
”1”

↑↓⇓⇑〉 + b|
”0”

⇓⇑↑↓〉. (3)

The CU and additional computing updates pulse sequence together ensure the computing
operations with qubits. Note, such one-qubit gate requires seventeen elementary pulses.

Not let us consider the state of quantum register, shown at the first line on Fig. 1 and
apply after stage marked ** the pulse πA,1. The result is presented on Fig. 3.

Fig. 3. The result of the SWAP pulse sequence finished by pulse πA,1.

We see that the CU moves transparently past the qubit ”1” and continues until mid-way
through passing qubit ”0”. Now the CU itself is subject to a transformation: it is altered

from ⇑⇓↓↑⇑⇓ to
−

↓
−

⇑
−

↓
−

⇑
−

↓
−

⇑ (only for passing the qubit ”0”!) and qubit ”0” itself will be
destroyed (Fig. 3).

Now we will apply again the SWAP pulse sequence and will become:
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Fig. 4. The scheme of the SWAP pulse sequence following sequence Fig. 3.

We see here, that by passing qubit ”1” the altered CU is preserved his form.

3 Two-qubit operations in one dimension

To implement the two-qubit gate such as CNOT it should be applied the another update
pulse sequence.

Let now the qubit ”0” will be as control qubit of CNOT gate. The CU transforms in
altered form by passing the control qubit and then we extend the sequence Fig. 5 after stage
marked ***** by following pulses with the end inversion pulse UA,1 ≡ πA,1:

πA,1, πB,1, πB,0, πA,0, πA,1, πB,0, πA,0, πB,1, πA,1. (4)

We will obtain:
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Fig. 5. The scheme of the update pulse sequence (4)

The last inversion operation doesn’t have effect on target qubit ”1”, as it must be for
CNOT gate. The reverse sequence returns CU and qubits to their initial states.

Let us return then to sequence Fig. 1 and continue it after stages marked **, when CU
passes mid-way through qubit ”1” by following sequence:
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Fig. 6. The scheme of the update pulse sequences after stage ** when CU passes the
qubit ”1”

The scheme of the update pulse sequences after stage **** when CU also passes the qubit
”1” is shown in Appendix A3.

We see, that the last inversion operation has effect on target qubit, as it must be for
CNOT gate only when the control qubit is ”1”.

We can consider a large set of quasi-one-dimensional antiferromagnetically ordered weakly
coupled at J(ly) � J(lx) arrays donors 31P in silicon substrate as an ensemble of artificial
molecules. In this case, there is no need to address qubits individually. We suppose that for
the determination of nuclear spin states in ensemble of those identical artificial molecules,
as in liquid-state bulk-ensemble quantum computer [9, 10], there are no need to fulfill the

electrical measurements and consequently any electrodes. Since the read-out signal in this
case will be proportional to the numbers of artificial molecule in the ensemble, it may be
used the NMR or fluorescence techniques for ensemble measurement of spin states.

4 Two- and three-dimensional antiferromagnetic struc-

tures

Instead of generalization to the parallel model employing ”sub-computers” with one-dimensional
structure, which was considered in [4], our approach allows to use also two and three-
dimensional structures. The coupled antiferromagnetically ordered chains model can be
extended to a two-dimensional antiferromagnetic chess-type ordering. Let the electronic
spins of the neighboring chains are setting for J(ly) 6= J(lx) > 2µBB. The electronic spins of
two neighbor chains will be in the singlet ground state. The subarray of nuclear spins will
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have the opposite orientation of nuclear spins relative to the subarray of neighboring chain.
The electron subsystem of two neighbor chains is in antiphase state, that is have the half
period shift of antiferromagnetically ordered electronic spins in the one chain relative to the
other. The nuclear subsystem of the both chains becomes corresponding chess-type ordering
(Fig. 7).

Let us suppose that an initial state containing some number of cells is loaded in the two-
dimensional structure of many coupled chains. The inputting the information into the cell
nearest to dopant atoms D (D-spin) is performed by means of corresponding π−pulse: ↓⇒⇑
or ↑⇒⇓. Then, the resonant frequencies of neighbor spins in the same chain and of spins
in neighbor chain is altered and another π−pulse will invert one of they or both according
to the values I1 and I2 of indirect nuclear spins interaction inside and between the chains.
Therefore, the excited nuclear spin states and accordingly the qubits may be passed to any
place in all two-dimensional structure. We will suppose as before that the qubits state will be
represented by four spin states in chains. The computing operation can be fulfilled analogous
to the above-considered one-dimensional scheme.

Fig. 7. The scheme of two-dimensional nuclear spin ordering in antiferromagnetic struc-
ture. It is showed the different ways that connect the D-spin (marked �) and a certain
qubit.

For everyone CU we have a two-dimensional section of array with large enough number

of qubits and one dopant atom. It is defined as a single-domain antiferromagnetic sample.
There are many ways that connect the D-spin and the qubit (Fig. 7). This section plays role
of many-qubit artificial molecule and the whole structure represent a large ensemble of such
molecules, which work simultaneously and ensure the parallelism of quantum operations.

The structures with two and three-dimensional antiferromagnetic and ferrimagnetic or-
der may be found perhaps among the natural rare earth or transition element dielectric
compounds.

The electron magnetization of a one subarray of antiferromagnet is defined by expression
[12]:

2µBN〈Sjz〉 = 2µBN(1 − P (T ) − ψ)/2, (5)
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where for low temperatures in spin-wave approximation

P (T ) =
1

(2π)d

∫

ddk

exp(ε(k)/kT − 1
(6)

is the contribution of thermal and ψ — of quantum fluctuations, ε(k) =
√

ε20 + (Jak)2 —
spin-wave spectrum, a — lattice period, Z — number of near neighbors, d — dimension of
structure.

For antiferromagnetic state of easy-axis type, when the interaction Hamiltonian of two
electron spin j and g for single-axis crystal has the form:

Hj,g = JSjSg − JA(SjxSgx + SjySgy), (7)

where J > JA > 0, JA — anisotropy constant, the contribution of quantum fluctuation, as
shown in [12], ψ = 0. In addition, for k ⇒ 0, T � ε0, where ε0 ∼ Z

√
JJA,

P (T ) ∼ Const · (kTε0/J2)d/2 exp(−ε0/kT ) ⇒ 0, (8)

that is in this state the thermal fluctuations in electron system also are not essential for the
ground electron spin states.

Note, that in the case of easy-flat state, ψ 6= 0, but the NMR resonance frequency depends
on the neighbor nuclear states to a greater extent than in case of easy-axis state [13].

The quantum state decoherence at low temperatures is defined on the one hand by the
active role of electron spin-wave effects [13]. They generate the fluctuated local field due
to Raman process of the electron spin wave scattering on individual nuclear spins. The
decoherence time or transverse relaxation time T2 of NMR in antiferromagnet for the low
temperatures (ε0/kT � 1) then is determined by expression [13]

1/T2 ∼ (A2/J) · (kT/J)3(ε0/kT ) exp(−ε0/kT )/π2h̄⇒ 0, (9)

value T2 rapidly grows.
On the other hand decoherence is defined by inhomogeneity of the local magnetic fields

and spread in resonance frequencies. The nuclear spin-spin interaction in natural dielectric
antiferromagnets is defined mainly by the Suhl-Nakamura indirect mechanism of interaction
through exchange of spin waves and is typically greater than the value, determined by the
direct nuclear spin-spin dipole interaction. This interaction of nuclear spins could play a
large role in the case of high spin concentration. Both of these decoherence mechanisms
can be, in principle, suppressed by some NMR many-pulse methods using the stroboscopic
observation of spin dynamics [14, 15].

The general requirements for natural antiferromagnetic structures, required for the con-
struction of NMR quantum computers, can be formulated in the following way:

1) The operating temperature T must correspond to the fully ordered antiferromagnet
TNS � T � TNI and to fully polarized nuclear spins TNSA/J ∼ A/k > T � TNI. From
where we will have the value T ≥ 10−3 K.

2) The two-dimensional and tree-dimensional magnetic structure must have chess-type
order (see Fig. 7).
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3) The magnetic structure must have the easy-axis state of antiferromagnetism in single-
axis crystals.

4) The atoms must have nuclear spins I = 1/2. Electron spins may be S ≤ 1/2.
There are the rare earth compounds of unique thulium stable isotope 169Tm, that has

nuclear spin I = 1/2, gN = 0.458 and makes up 100% of naturally occurring elements with
stable spinless isotopes of other elements. They can be: Tm2O3, TmSi2, TmGe2 and TmSe
[16, 17]. The ground electronic state of magnetic ions Tm3+ corresponds to S = 1. The
natural elements O, Si, Ge and Se have, accordingly, nuclear spin containing isotopes (in
brackets it is shown the isotope occurrence) 17O I = 5/2 (0.04%), 29Si I = 1/2 (4.7%), 73Ge
I = 9/2 (7.76%), 77Se I = 1/2 (7.78%). For Yb2O3 TNS ∼ 2.3 K, isotope 171Yb (14.31%)
has I = 1/2 and S ′ = 1/2 (ground state is Kramers doublet). It is known, that compound
TmSe has the critical temperature for antiferromagnetic transition TNS ∼ 2K[17]. The
antiferromagnets with two different nuclear spin I = 1/2, for example FeF2 with rutile-type
and TmAg with CsCl−type structure, which have critical temperature 79 K and 9.5 K, may
be also of interest to the considered questions. Isotopes 57Fe (2.19%), 19F (100%), 107+109Ag
(100%) have according values gN = 0.182, gN = 5.26 and gN = 0.24.

In conclusion, we will point out the several advantages of the considered model: it uses
the antiferromagnetic structure containing only one type of atoms with nuclear spin 1/2,
it is not needed to have any gate electrodes, the decoherence associated with noise voltage
is absent, the considered way of qubit coding ensures a better fault-tolerance with respect
to the generation of wrong qubits, the model admits an ensemble address qubits, it may be
used as base for development of bulk-ensembles three-dimensional solid-state NMR quantum
computer.

The author is grateful to K.A.Valiev for critical reading of the article and useful remarks
and V.A.Kokin for the help in preparation of this text.

Appendixes

A1. The scheme of the additional computing update pulse sequence after stage

** at Fig. 1:
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A2. The scheme of the reverse update pulse sequence after one-qubit operation

UA,1:
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A3. The scheme of the update pulse sequences when CU passes the qubit ”1”

after stage ****:
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