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How behavior of systems with sparse spectrum can be

predicted on a quantum computer

Yuri Ozhigov ∗

Abstract

Call a spectrum of Hamiltonian sparse if each eigenvalue can be quickly restored with
accuracy ε from its rough approximation in within ε1 by means of some classical algorithm.
It is shown how a behavior of system with sparse spectrum up to time T = 1−ρ

14ε can be
predicted with fidelity ρ on quantum computer in time t = 4

(1−ρ)ε1
plus the time of

classical algorithm. The quantum knowledge of Hamiltonian H eigenvalues is considered
as a wizard Hamiltonian WH which action on any eigenvector of H gives the corresponding
eigenvalue. Speedup of evolution for systems with sparse spectrum is possible because for
such systems wizard Hamiltonians can be quickly simulated on a quantum computer. This
simulation, generalizing Shor trick, is a part of presented algorithm. In general case the
action of wizard Hamiltonian cannot be simulated in time smaller than the dimension of
main space which is exponential of the size of quantum system. For an arbitrary system
(even for classical) its behavior cannot be predicted on quantum computer even for one
step ahead. This method can be used also for restoration of a state of an arbitrary primary
system in time instant −T in the past with the same fidelity which requires the same time.

1 Introduction and background

A behavior of typical quantum system cannot be analyzed at hand or by classical computer be-
cause huge dimension of its Hamiltonian makes it impossible to solve Shröedinger equation even
numerically. Nevertheless one can expect that this analysis would be easier in the framework
of quantum computing. The idea of this approach is to force one quantum system to simulate
a behavior of other more simple primary system with some profit in time. In the particular
case where the primary system is a classical computer with oracle this is a problem of quantum
speedup for classical computations: given a classical algorithm with oracle, is there a quantum
algorithm computing the same function faster using the same oracle quantumly? Examples:
Shor factoring algorithm (look at [Sh]), Grover search algorithm (look at [Gr]).

In general case the problem of prediction has the following form: given a low of evolution
for some system (classical or quantum) is there a device (wizard) of not exponential size which
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can predict the behavior of this system? To predict the behavior means that given a time
instant, wizard returns a state of initial system in this instant earlier than this state appears
in its natural evolution. Note that in general case of quantum evolution a wizard may use
quantumly not only Hamiltonian (like in case of quantum computations with oracle) but some
hidden information about primary system. What kind of such information may be useful for
prediction? This is the information about eigenvalues of primary Hamiltonian. This article
analyses the possibility of quantum predictions in terms of spectrum of primary system.

Quantum method of finding eigenvalues was first presented by Abrams and Lloyd in their
work [AL]. Their method, generalizing a quantum part of Shor factoring algorithm, uses Quan-
tum Fourier transform (QFT) and requires of order N implementations of initial Hamiltonian
where N is the dimension of the main space. Thus, their algorithm requires exponential time
and it cannot be used for quantum speedup. However, for the systems whose spectrum is
sparse the idea of this approach with QFT may be used for predictions. I proceed with the
exact definitions.

2 Definitions

Let H be some Hamiltonian which induces unitary transformations U in some N dimensional
space Y of states of n qubits by the usual rule in quantum mechanics: U(τ) = exp(−iHτ/h),
N = 2n. In order to apply notions from the algorithm theory, such as complexity, etc., we
assume that the time of Hamiltonian action is always τ = 1. We may of course choose another
value for τ but this would only involve the change in time scale without any subsequences
for the algorithm complexity. Call a system primary if its evolution is determined by unitary
transformation U .

We assume that the complexity of computation is the number of U applications. Time of all
other transformations we use here is assumed to be negligible comparatively with the time of
computation. Quantum Fourier transform (QFT) requires the time of order n2 (look at [Sh]).
Here we shall use this transform for log2(M) gubits in the following form:

QFTM : |s〉 −→ 1√
M

M−1∑
l=0

exp(−2πisl/M)|l〉

Let eigenvalues of H have the form −2πωkh , k = 0, 1, . . . , N − 1, when frequencies ωk are
real numbers from the segment [0, 1). Then the eigenvalues of U will be exp(2πiωk). This is
not loss in generality because we always can choose other unit τ for Hamiltonian action time.
Let us give the precise definitions of the ”knowledge of eigenvalues” of H . It means that there
exists another Hamiltonian WH called a wizard for H which acts in N2 dimensional Hilbert
space and returns an approximation of frequencies ωk in within 1/N given eigenvector Φk of
H . Introduce the following notations. Every frequency ωk has binary notation 0.ε1ε2 . . .. Let
p ≤ n be some integer, M = 2p. Denote the string of ones and zeroes ε1ε2 . . . ep by ε̄pk. ε

p
k may

be considered as integer if we cancel all first zeroes. And vise versa, every integer l less than
M can be written in form ε̄pk if we add suitable number of zeroes in front. Then the number
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ω̃M
k = 0.ε̄pk will be approximation of wk in within 1/M . We shall define this number 0.ε̄pk from

[0, 1) by (0.l)p. Wizard action in these notations will be

WU |Φk, b〉 −→ |Φk, b
⊕

ε̄pk〉
where

⊕
is the biwise addition modulo 2.

At last introduce auxiliary transformations WH and Up
seq. Let the memory is divided into

the main part x of n qubits and ancilla a of p ≤ n qubits: |x, a〉, M = 2p. Put:

1). WH|x, a〉 = 1√
M

M−1∑
s=0

(−1)a·s|x, s〉. This is Walsh - Hadamard transform applied to ancilla

where · denotes dot product modulo 2.
2). Up

seq|x, a〉 = |Uax, a〉. This is the result of a sequential applications of U to the main
register.

Walsh-Hadamard transform can be fulfilled in a standard model of quantum computer.
To fulfill Up

seq it would suffice to use the following oracle Ucond (conditional application of U)
depending on U: Ucond|x, α〉 −→ |x′, α〉, where x′ = x if α = 0 and x′ = Ux if α = 1, α is
one qubit register. An application of Ucond cannot be reduced to the simple using of U as an
oracle because a conditional application of U is quantumly controlled by the second register.
One proposal about its practical implementation can be found in the section 4.5.

3 Wizard transformation

3.1 How wizard predicts evolution

Assume temporarily that we have exact equations ωk = ω̃N
k . Given a wizard transformation

WU how can we predict evolution of initial system? Let |ξ〉 denote initial state as a contents of
n qubits main register. Let

ξ =
N−1∑
k=0

xk|Φk (1)

be the expansion of our state in basis of eigenvectors of U . Add n qubits ancillary register
initialized by zeroes and obtain the state |ξ, 0n〉.

Now apply the wizard transformation WU to the main register (p = n). It gives the state

ξ′ =
N−1∑
k=0

xk|Φk, ε̄
p
k〉.

Given the number t we can turn each state in the first register by angle determined by the
second register and t: 2πωkt. This gives the state

ξ′′ =
N−1∑
k=0

xk exp(2πiωkt)|Φk, ε̄
p
k〉.

At last apply wizard again obtaining

ξ′′′ =
N−1∑
k=0

xk exp(2πiωkt)|Φk, 0
n〉,
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and now cancellation ancilla gives exactly the state U t|ξ〉 which is the state in time instant t
of initial system. Thus given a wizard we can predict the behavior of initial system provided
the action of wizard takes smaller time than t/2.

3.2 Simulation a wizard

In this subsection I describe the procedure of simulation a wizard action on zero ancilla. The
particular case p = n of this procedure was proposed in other purpose in the paper [AL].

We start from the state of the form (1) with ancilla attached initialized by zeroes. Wizard
action on the initial state with zero ancilla is defined by the following:

QFTM Up
seq WH |ξ, 0p〉. (2)

Why this procedure must work? Let us again assume temporarily that ωk = ω̃M
k ex-

actly. Then we have WH|ξ, 0p〉 = χ0 = 1√
M

N−1∑
k=0

M−1∑
s=0

xk|Φk, s〉. Application of Up
sec gives:

χ1 = Up
secχ0 = 1√

M

N−1∑
k=0

M−1∑
s=0

xk exp(2πiωks)|Φk, s〉. Now QFTMχ1 =
N−1∑
k=0

xk|Φk, ε̄
p
k〉. This is just

the wizard action. But in general case the result of QFT transform has not so simple form. It
means that we cannot merely clean ancilla by repetition of wizard action in predicting algo-
rithm even if we have a wizard action on all words. Hence the precision of a wizard simulation
by (2) must be elaborated in more details.

3.3 Accuracy of a wizard simulation

Let {ω̃k,i} be some set of integers. Denote Lε(ω̃k,i) = {i : |(0.ω̃k,i)p − ωk| ≤ ε or
|(0.ω̃k,i)p − ωk − 1| ≤ ε}. Let ξ be a state of the form (1).

Definition A transformation W of the form

W : |ξ, 0p〉 −→
N−1∑
k=0

M−1∑
i=0

λi,k|Φk, ω̃k,i〉

is called a transformation of Wδ,ε type if
N−1∑
k=0

∑
i∈Lε(ω̃k,i)

|λi,k|2 ≥ 1 − δ for any ξ. Thus,

δ is an error probability from the quantum superposition, and ε is a precision of eigenvalues
approximations.

Lemma 1 The transformation QFTM Up
seq WH belongs to the type W 1

K
, K
M

for any K ∈
{1, 2, . . . ,M}.

Proof
Denote QFTM Up

seq WH |ξ, 0p〉 by χp,2. Then we have

χp,2 =
1

M

N−1∑
k=0

M−1∑
l=0

xkHl,k|Φk, l〉 (3)
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where Hl,k =
M−1∑
s=0

exp(2πis(ωk−(0.l)p)). Put ∆ = ωk−(0.l)p. Then by summing the progression

we obtain

Hl,k =
1 − exp(2πiM∆)

1 − exp(2πi∆)
. (4)

Let ∆ = K
M

+ δ, K = K(l), where 0 ≤ δ < 1/M, K integer. Then each Hl,k depends on
K : Hl,k = Hl,k(K). Fix some value for K: K0. It means that the accuracy of eigenvalues
approximations will be K0/M . Estimate the sum of squared amplitudes for states |Φk, l〉 for
which K : K0 ≤ K ≤ M −K0. Using that module of denominator in (4) is separated from

zero by min{πK
M
, π(M−K)

M
}, we have:

N−1∑
k=0

M−K0∑
K=K0

|xk|2 1
M2 |Hl,k(K)|2 ≤

4
N−1∑
k=0

M−K0∑
K=K0

|xk|2/π2K2 ≤ 4
π2

M−K0∑
K=K0

1
K2 ≤ 1

K0

.

This is exactly what is needed. Lemma 1 is proved.
What would happen if we apply other sequence of transformations QFT−1

M (Up
seq)

−1 WH
instead of QFTM Up

seq WH for revealing frequencies?

Lemma 2 Let for some state χ

χ2 = QFTM Up
seq WH|χ, 0p〉 =

∑
k

M−1∑
l=0

yk,l|Φk, l〉

χ′
2 = QFT−1

M (Up
seq)

−1 WH|χ, 0p〉 =
∑
k

M−1∑
l=0

y′k,l|Φk, l〉

Put δk,l = ω̃N
k −(0.l)p, ∆ = ωk−(0.l)p, χ

′′
2 =

∑
k

M−1∑
l=0

y′k,l exp(2πi(M−1)δk,l)|Φk, l〉. Let M/N < ε.

Then
‖χ′′

2 − χ2‖ < 7ε

Proof
We have yk,l = xkHk,l (look at (3),(4)), where Hk,l = Hk,l(∆). Then y′k,l = xkHk,l(−∆).

Now Hk,l(∆) = Hk,l(−∆) exp(2πi(M − 1)∆), |δk,l − ∆| ≤ 1/N , 2π(M − 1)|δk,l − ∆| ≤ 7M/N
and Lemma 2 follows.

3.4 Complexity of a wizard

It is readily seen that the above procedure for p = n requires N applications of the initial
transformation U , hence it cannot be used on purpose to predict its evolution. It turns that in
general case the following theorem takes place.

Theorem 1 It is impossible to simulate a wizard action with precision up to O(1/N) using
less than Ω(N) conditional application of initial transformation Ucond.
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Proof
A lower bound for the time of quantum computation of the PARITY function is N/2 by the

results [FGGS] and [BBCMW]. These constructions can be extended to the case when we can
use more general oracle Ucond instead of U when evaluating PARITY. Assuming that a wizard
action can be simulated using less than Ω(N) application of Ucond, in view of the previous
subsection we would be able to compute the function PARITY on a quantum computer in time
less than N/2 (adding appropriate constant to the number n in order to enhance accuracy)
which leads to the contradiction. Theorem 1 is proved.

Call a unitary transformation U classical if it maps basic states to basic states. One can
ask is there any way to predict a behavior of classical system on a quantum computer? This
statement is independent of a form of spectrum. It turns that in general case a behavior of
the bulk of classical systems in a short time frame is impossible on quantum computer even on
one step ahead (look at [Oz]). Here short time means approximately O(N1/7), where N - the
number of all states.

But for one class of systems the quantum prediction is possible. This is the class of systems
with sparse spectrum.

4 Prediction of the evolution of the systems with sparse

spectrum

4.1 Case of precise eigenvalues

What would happen if we use less number of qubits p < n instead of n in the ancilla? Simulation
of the wizard will be shorter, but it will be simulated with the corresponding loss in precision
and we obtain no prediction.

Nevertheless, if the spectrum is sparse then prediction is possible. Indeed, suppose that we
have classical algorithm h enhancing the accuracy of eigenvalues approximation.

Namely, let p < n, M = 2p and let h : {0, 1}p −→ {0, 1}n be integer function mapping
rough frequency approximation up to 1/M to the more precise approximation up to 1/N .

Given the initial state ξ and time instant t we shall now describe the procedure of quick
finding U tξ. The idea is simple: Repeat the procedure from above with only p ancillary qubits
instead of n, and enhance accuracy by h.

At first we assume for the simplicity that we have exact equalities ωk = ω̃M
k . Here is the

detailed description of the algorithm.
First we apply Walsh-Hadamard transform to the ancilla and obtain

χ0 =
1√
M

N−1∑
k=0

M−1∑
s=0

xk|Φk, s〉

Then we apply Up
seq. Since s ≤ p this operation requires p conditional applications of U .

This gives the state

χ1 =
1√
M

N−1∑
k=0

M−1∑
s=0

xkU
s|Φk, s〉 =

1√
M

N−1∑
k=0

M−1∑
s=0

exp(2πiωks)xk|Φk, s〉.
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Now application of QFTM to the second register yields:

χ2 =
N−1∑
k=0

xk|φk, ω̃k〉

where 0.w̃k is approximation of eigenvalue ωk in within 1/M .
This is the point when we will use that the spectrum is sparse. Add one more register with

n qubits initialized by zeroes:
N−1∑
k=0

xk|Φk, ω̃k, 0
n〉. Apply the unitary version of the algorithm

h enhancing accuracy to two ancillary registers: |a, b〉 −→ |a, b⊕
h(a)〉. This gives the state

N−1∑
k=0

xk|Φk, ω̃k, h(ω̃k)〉. Now we turn every state of the form |Φk, ω̃k, l〉 to the angle 2π · 0.l · t and

obtain the state
N−1∑
k=0

xk exp(2πi · 0.l · t)|Φk, ω̃k, l〉. Here t is a given time instant. Now apply

unitary version of h which cleans up n last ancillary qubits and then discard them:

N−1∑
k=0

xk exp(2πωkt)|Φk, ω̃k〉,

and again QFTM to the p ancillary qubits:

1√
M

N−1∑
k=0

M−1∑
s=0

xk exp(2πiωkt) exp(−2πiω̃ks)|Φk, s〉,

then again Up
seq and Walsh-Hadamard transform to the ancilla. The result will be:

N−1∑
k=0

xk exp(2πiωkt)|Φk, 0
p〉. The wanted state is in the main register now.

Note that all the work with enhancing an accuracy here is not mandatory because ωk = ω̃M
k

exactly. Why this scheme doesn’t work for the case when ω̃M
k are only approximations of

the true eigenvalues ωk ? The point is that χ2 will not have so simple form and in addition
multiplication frequencies by t will cause big error for t = O(N). Thus for the general case
more refined algorithm is needed.

4.2 General case

We have numbers n and p. Choose some q : p ≤ q < n and put L = 2q. Without loss in
generality we can extend h to the mapping h : {0, 1}q −→ {0, 1}n so that if ω̃L

k = (0.x)q then
ω̃N

k = (0.h(x))n.
Our initial state has the form

ξ =
N−1∑
k=0

xk|Φk, 0
q〉

1. Apply QFTLUq
seqWH to the initial state to get χq,2.
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2. Add one more register with n qubits initialized by zeroes:
∑
k

L−1∑
l=0

yk,l|Φk, l, 0
p〉 and apply the unitary version of the algorithm h enhancing accuracy to two

ancillary registers: χ3 =
∑
k

L−1∑
l=0

yk,l|Φk, l, h(l)〉.
3. Turn every state of the form |Φk, l, h(l)〉 to the angle 2π · 0.h(l) · t and obtain the state

χ4 =
∑
k

L−1∑
l=0

yk,l exp(2πi · 0.h(l) · t)|Φk, l, h(l)〉. Here t is given time instant.

4. Put δ∗k,l = (0.h(l))n − (0.l)q. Turn every state of the form |Φk, l, h(l)〉 to the angle
−2π(L− 1)δ∗k,l. Denote the result by χ5.

5. Now apply unitary version of h which cleans up n last ancillary qubits and then discard
them:

χ6 =
∑
k

L−1∑
l=0

yk,l exp(2πi · 0.h(l) · t) exp(−2πi(L− 1)δ∗k,l)|Φk, l〉.
6. Apply to χ6 the transformation WH Uq

sec QFTL, then observe and discard ancilla.
The time of this algorithm is 2L + 2tQFTL

+ 2th + w where tQFTL
is the time of Fourier

transform, th is the time of enhancing accuracy and w is the time of rotations.

Lemma 3 Denote the result of algorithm 1-6 by Uq,t. For any δ > 0 for any p, q, n, t altering
so that q = p+ c, L = 2q, t : 0 < t ≤ CN , where c = log2(

4
δ
), p ≥ c, C = δ

14
we shall have

‖Uq,t − Ut‖ < δ

Proof
Introduce the simplifying notations:

χ =
∑
k

L−1∑
l=0

yk,l exp(2πiωkt)|Φk, l, h(l)〉, χ̃ = QFT−1
L (Uq

seq)
−1 WH exp(2πiωkt)

∑
k
xk|Φk, 0

q〉,

χ′ =
∑
k

L−1∑
l=0

yk,l exp(2πiωkt) exp(−2πi(L− 1)δ∗k,l)|Φk, l〉.
By Lemma 1 ‖χ4 − χ‖ < δ

2
. The passages χ4 −→ χ6 and χ −→ χ′ are fulfilled by the same

unitary transformation, which preserves lengths. Consequently, ‖χ6 − χ′‖ < δ
2
. By Lemma 2

‖χ̃−χ′‖ < δ
2
. Then triangle inequality gives ‖χ6− χ̃‖ < δ. The passages χ6 −→ Uq,t and χ̃ −→

U t are fulfilled by the same unitary transformation WH Uq
sec QFTL. Hence ‖U t − Uq,t‖ < δ.

Lemma 3 is proved.
By Lemma 3 this algorithm gives the prediction of state in time instant O(N) in time

O(M) if classical algorithm enhancing accuracy obtain eigenvalues in negligible time. Thus if

it is possible to enhance accuracy of eigenvalues from ε1 to ε the speedup will be ε1(1−ρ)
56ε

, where
ρ is a fidelity, 0 < ρ < 1. The result can be formulated as

Theorem 2 Given a Hamiltonian of system with sparse spectrum and algorithm enhancing the
accuracy of eigenvalues from ε1 to ε and a fidelity ρ, a state of the system in the time instant
1−ρ
14ε

can be obtained in time 4
(1−ρ)ε1

with this fidelity.
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4.3 Generalizations

4.3.1 Sparse areas of spectrum

A spectrum of real system like molecule typically contains strips where spectrum is continuos
separated by gaps where energy levels are absent at all. Let w be the maximal width of strips
and g be the minimal width of gapes.

Regard the times of evolution less than 1/w (here we assume the system of units where
Plank constant is unit). For these times the width of strips is negligible and we can assume that
ε1 = 1/g in Theorem 2. So in this situation ε = w and we obtain the following generalization
of Theorem 2.

If t = o(1/w) we can predict the state U(t) of primary system in time tpre = O(tw
g
).

Yet more generalization can be obtained if we consider the spectrum which is not sparse at
all but has sparse areas. Here if the initial state of primary system is concentrated in sparse area,
the prediction is possible with such probability which is equal to the degree of concentration.

4.3.2 Travelling in a time: predictions and restoration of a history

A wizard transformation may be used not only for predictions a future but for restoration of
a history as well. If we replace the time t by −t in predicting procedure then we obtain the
state of primary system in time instant −t which means the restoration of a history. Perform
procedure from the section 4.2 with −t instead of t, where 0 < t < CN . This makes possible
to obtain the state of primary system in time of order −N in the past. Thus we conclude the
following generalization of Theorem 2.

Theorem 3 Given a Hamiltonian of some system, its states in time instant T = 1−ρ
14ε

in future
as well as in time instant −T in the past can be obtained in time 4

(1−ρ)ε1

with fidelity ρ provided
each eigenvalue can be quickly calculated with precision up to ε given its approximation with
accuracy ε1.

Note that for restoration of a history we don’t need a sparse spectrum, may be ε1 = ε.
This is surprising because the algorithm uses only operator U when the natural way to obtain
a state from the past is to use an inverse transformation U−1 and there is no evident way to
simulate the action of the inverse transformation by means of U.

4.4 Examples

4.4.1 Shor factoring algorithm

Formula (2) for a wizard simulation can be considered as a natural generalization for the
quantum part of Shor factoring algorithm ([Sh]). Let a unitary operator U in (2) has the form
U|x〉 −→ |ax (mod q)〉, where ax is a multiplication of integers, (a, q) = 1. Then eigenvectors

of U have the form 1√
r

r−1∑
j=0

exp(−2πikj/r)|aj (mod q)〉 and its eigenvalues are exp(2πij/r) where

r is a period of a (minimal integer such that ar ≡ 1 (mod q)). If we apply an operator (2)

9



with this U to zero initial state and observe the second register then by Lemma 1 we obtain
an approximation of a number j/r up to O(1/N) with high probability. Using this procedure
sequentially we can restore the value r of a period. This procedure was used for factoring by
Shor.

Here we use a wizard simulation (2) as a technical element of the algorithm 4.2. Alter-
natively, one can try to use Kitaev’s method instead of QFT in (2). Namely, consider one
controlling qubit and use Hadamard transform after conditional application of U and repeat
this with numerous controlling qubits. Then by some auxiliary transformation it is possible
to extract eigenvalues in ancillary register (look at [Ki] for details). But then we must get rid
of revealed eigenvalues like in the point 6 of the algorithm and it faces a little difficulty when
using Hadamard transform instead of QFT in (2), because we have not U−1

cond and must always
manage with only Ucond.

4.4.2 Grover search algorithm

Consider Grover algorithm for the fast quantum search: U(t)|0̃〉 = (I0̃Ia)
t|0̃〉, where Ib denotes

inversion of the state b: Ib|b〉 = −|b〉, Ib|s〉 = |s〉 for 〈b|s〉 = 0. It was shown in [Gr2] that
if |〈0̃|a〉| = O(1/

√
N) then U(t1) ≈ |a〉 for t1 = O(

√
N) independently of 0̃, where N is the

dimension of main space. What will happen if we apply Theorem 2 for U as a primary evolution?
The problem in fact will be two dimensional and the minimal gap between eigenvalues will be
of order 1/

√
N . Hence, by Theorem 2 we can predict the states U(t) for t = O(N) in time of

order
√
N . As for t = O(

√
N) we obtain no additional speedup.

4.5 About practical implementations

The two main components of the algorithm are conditional iterations of a primary transforma-
tion U and QFT.

The main difficulty for the practical implementation of this method is in conditional itera-
tions of U. Given only a primary device realizing U one cannot immediately fulfil this iterations
because it requires quantum control on the number of iterations. The solution may be following.
Decomposition of a primary device into elementary parts that can be included to the quantumly
controlled circuit and realize the conditional iterations of U for all parts simultaneously. All
controlling qubits should be used in entangled state as a Shröedinger cat. Given a quantum
gate array computing U we can easily construct a new gate array computing Ucond. To put it
otherwise a conditional application of U is possible through the control on microscopic level
(this bears a resemblance with the control in living cells).

This scheme can be reformulated by means of analogous quantum computing if we consider
QFT on an ancillary register as a passage to the canonically conjugate magnitude. Say, if we
use a value of coordinates in operations with a register then canonically conjugate will be the
corresponding impulse. The passage from the coordinate representation of a wave function to

10



the impulse representation in one-dimensional case can be defined as

φ(p) =

+∞∫

−∞

exp(−ipx/h)ψ(x)dx

where a probability to obtain impulse in a segment (p, p + dp) is |φ(p)|2dp/2πh. Assume that
we have one particle which can be located in M points of the form x = 0, 1

M
, 2

M
, . . . , M−1

M
.

Then the coordinate quantum space for one particle will be M dimensional. Consider the
corresponding integral sum for φ(p) in the system of units where Plank constant h is one. This
integral sum will be just the sum in the definition of QFT where x plays a role of s/M and
p/2π plays a role of l.

Then the main algorithm acquires the following general form.
a). Primary evolution quantumly controlled by a magnitude containing in the properly

prepared ancillary register.
b). Simple actions depending on the canonically conjugate magnitude.
c). Repetition of a).
Procedure of such a kind can predict a behavior of a primary system with sparse spectrum

and restore the state of arbitrary system in the past. This scheme seems to be very simple
and would be interesting to find its natural physical analog. The good starting point here may
be the comparison between spectral features of the known systems and their functions and
complexity.

5 Conclusion

Formulate again the main result: the method is presented which makes possible to obtain states
of a primary quantum system earlier than they appear naturally in its evolution provided the
spectrum of system is sparse. This speedup will be the more if the gaps between continuous
strips of spectrum increase comparatively to the width of strips. This method can be applied
also for restoration of states of the arbitrary primary system in the past. This method yields a
speedup and it can make possible to fit into the time when coherent states exist and thus fight
decoherence in quantum computations.
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