
PCI_I440BX

ThePCI_I440BXmoduleis a busandDMA controller for thePCIbusescontrolled by theIntel 400BX chipset.

ProcessInf ormation

PrototypeName pci

Link Order before any PCIor ATA bus drivers

Process Name unused(‘initonly’ process).

Module Options

PCI_TRACE_CONFIG If this symbol is defined, all accessesto PCIconfigurationspacewill
be traced through calls to rome_kprintf. This is only useful during
systemdebugging if adeviceonthePCIbusappearsto beincorrectly
identified or configured..

TargetFile Definitions

PCI_BUSES Thenumber of PCI buseson thesystem. This is normally 2 (onefor
AGPandonefor PCI).

PCI_IO_BASE The addressin IOspaceof the start of the areainto which device
registerscanbemapped.

PCI_MEM_BASE Theaddressof anareaof mainaddressspaceinto which bus-device
memoryareascanbemapped.

PCI_NUM_SLOTS The numberof slots on eachbus to be probed during startup. This
usually 20 on this chipset.

Data Definitions

pci_bios.h containsthefollowing datatypedefinitions:

PCI_ADDRESS_MAP The datastructure representing the resource mapfor the device af-
ter it hasbeen configured. Thedevice andvendor fields contain the

1

PCI_I440BX

device and vendor codes for the specificdevice. The int_line and
int_pin fields contain the interrupt line andpin values from the de-
vice’s configuration. The seven-elementarrays representarraysof
memoryor IOspaceallocatedto thedevice.For eachslot, the io field
is TRUE if this is an IOspaceallocation. The base_reg field con-
tains thesizeandtype informationfrom thedevice,andmem_req is
the sizeextractedfrom this field. Themem_assignedfield givesthe
addressin IOspace or memoryto which this areahasbeenmapped.

PCI_BIOS_LOCATION The datastructure representing the location of a device on the PCI
bus. It containsthebus_numberof thePCI buson which thedevice
was found, the device_number (or slot) on that bus, and the func-
tion_number for multi-function devices.

ProcessOperation

Theinitialisation routinelocatestheindividual componentsof theI440BX chipset on thebuses,andinitialisesthe
DMA areas. The areafrom c.0000h to f.000h is usedfor DMA control blocks and is marked uncachedandthe
PAM registersareset to make the memoryaccessible asRAM. the areafrom 10.0000h to 20.0000h is usedfor
DMA buffers andis alsomarked uncached. Thebuffers arerepresented internally asa bitmap-vectorresourceof
2564k pages. All memoryabove 8000.0000his available for memory-mappeddevicesandis uncachable.

Thereis no mainprocess,andthemoduledoesnot handle any messages.

Shared Library Macrosand Routines

The foll owing routinesareused by drivers for devicesconnectedthrough the chipset on both the PCI andATA
busesto handle device configurationandDMA requests.

The DMA interfaceis through a channel allocatedto deviceswhich canuseDMA. The channelsarecalled
PCI_DMA_PRIMARY_IDE, PCI_DMA_SECONDARY_IDEandPCI_DMA_CHANNELn for n = 0..7. Channel4
is not availableasit is thecascade channel. Theindividual channelsareallocatedthrough thetarget file according
to theconfiguration. Eachchannel is representedby anareacontrolling its operation. Only oneoperation canbe
active on eachchannel at a time. Associated with eachchannel is an areaof uncachedmemoryusedasan input
or output buffer. Dataarecopiedinto thesebuffers within the library, so the devicealways seescached data(for
optimal performance).

In mostcases, theDMA channel is startedwhenthesetuproutine is called. However the IDE channelsrequire
additional configurationstepsin thedriverandthereis aseparatestart command. Callingstartontheother channels
is harmless,andprobablygood practice.

Devicesthat perform their own DMA alsorequire accessto uncachedmemoryareas. Theseareallocated as
pagesandcanbeusedasinput or output buffersasrequired. Thelibrary contains routinesto allow device drivers
to obtain andreleasepages asneeded.

pci_dma_done

int pci_dma_done(
int channel_index)

Thepci_dma_done routine should becalled whenthe DMA enginesignalscompletion to the device
usingchannel_index. Theroutine stops theDMA channeland,if theoperationwasa read,copiesthe

2

PCI_I440BX

datainto thebuffer previously providedin thesetup call. Theroutinereturnsthestatus flagsfrom the
DMA channel.

pci_dma_new_area

int pci_dma_new_area(
int channel)

Thepci_dma_new_arearoutine initialisestheareafor theDMA resourcerepresented by channel. The
valuereturnedis aninteger usedto referencetheareaon subsequent calls.

pci_dma_page_free

void pci_dma_page_free(
uchar *page)

Thepci_dma_page_freeroutinereturnsthepageatpage to thefreepool. Thecallershould ensurethat
this wasa pageoriginally returnedby acall to pci_dma_page_new, andthat no devicehasareference
to this page (for examplein a linked-list of receivebuffers).

pci_dma_page_new

uchar *pci_dma_page_new(void)

Thepci_dma_page_new routine returns a pointer to a 4k pagesuitable for usingasaninput or output
buffer for anexternal device.

pci_dma_setup

void pci_dma_setup(void)

Thepci_dma_setup routine is calledfrom within themainPCI initialisationprocessto setup theareas
for DMA.

pci_dma_setup_read

void pci_dma_setup_read(
int channel_index,
ptr buffer,
int count)

The pci_dma_setup_read routine prepares the channel areaidentified by channel_index for a read
operation of up to countbytes.

pci_dma_setup_write

void pci_dma_setup_write(
int channel_index,
ptr buffer,
int count)

The pci_dma_setup_write routine preparesthe channel areaidentified by channel_index for a write
operation. count bytesof dataarecopied from thesuppliedbuffer into thechannelsuncachedmemory.

3

PCI_I440BX

pci_dma_start_read,pci_start_dma_write

void pci_dma_start_{read|write}(
int channel_index)

Thepci_dma_start_readandpci_dma_start_write routinesstarttheDMA engine for channel_index.
It is assumedthatthechannel hasbeencorrectly preparedby a corresponding setup call.

pci_find_class_code

int pci_find_class_code(
int class_code,
int index,
PCI_DEVICE _LOCATION *devloc)

Thepci_find_class_coderoutinelocatestheindex’ th device in thesystemwith deviceclassclass_code,
andsetsdevloc to its bus, slot and function location. The routine returns 0 if a device was found,
PCI_DEVICE_NOT_FOUNDif no suchdevice exists, or another PCIerrorcode.

pci_find_device

int pci_find_device(
int vendor_id,
int device_id,
int index,
PCI_DEVICE _LOCATION *devloc)

Thepci_find_deviceroutine locatestheindex’ th device in thesystemwith identificationvendor_id and
device_id, andsetsdevloc to its bus,slot andfunction location. Theroutine returns0 if a device was
found, PCI_DEVICE_NOT_FOUNDif no such device exists,or anotherPCI errorcode.

pci_get_irqs

int pci_get_irqs(
PCI_DEVICE _LOCATION *devloc,
uint *where)

Thepci_get_irqsroutinereturnstheinterrupt vector numbers of thefour PCI interruptsfor thadevice
atdevloc in thesupplied arrayof integers.where[0] correspondsto INTA andwhere[3] to INTD. The
routinereturns0 if successfulanda PCIerror codeotherwise.

pci_read_config1,pci_read_config2,pci_read_config4

int pci_read_config{1|2|4}(
int bus,
int dev,
int func,
int reg,
{ uchar|ushort|uint } *data)

The pci_read_config routinesreadone, two or four bytes from the configuration register reg of the
device on PCI busbus at slot dev subfunction func. The reg valueshould bealignedcorrectly for the

4

PCI_I440BX

sizeof theread.Thevalueis returnedthrough thedatapointer andtheroutinereturns0 on successor
a PCIerror otherwise.

pci_read_controller1, pci_read_controller2, pci_read_controller4

int pci_read_controller{1|2|4}(
int controller_type,
int reg,
{ uchar|ushort|uint } *data)

The pci_read_controller routinesreadone, two or four bytesfrom the configuration register reg of
the PCIbus controller element specifiedby controller_type. The controller typesaredefinedin the
pci_bios.hheader file. The reg valueshould bealignedcorrectly for thesizeof theread.Thevalue is
returnedthrough thedatapointer andtheroutine returns 0 on successor a PCIerrorotherwise.

pci_write_config1,pci_write_config2,pci_write_config4

int pci_write_config{1|2|4}(
int bus,
int dev,
int func,
int reg,
{ uchar|ushort|uint } data)

Thepci_write_config routineswrite one,two or four bytesfrom datainto theconfigurationregister reg
of the device on PCI bus bus at slot dev subfunction func. The reg valueshould bealignedcorrectly
for thesizeof thewrite. Theroutine returns0 on successor a PCIerrorotherwise

pci_write_controller1, pci_write_controller2, pci_write_controller4

int pci_write_controller{1|2|4}(
int controller_type,
int reg,
{ uchar|ushort|uint } data)

Thepci_write_controller routineswrite one,two or four bytesfrom datainto theconfigurationregister
reg of thePCIbuscontroller elementspecified by controller_type. Thecontroller types aredefined in
thepci_bios.hheaderfile. Thereg valueshould bealignedcorrectly for thesizeof thewrite. Thevalue
is returnedthrough thedatapointer andtheroutine returns0 on successor a PCIerrorotherwise.

5

