
Standard MessageSet

TheStandard messagesetcontainsthebasicdataflow messagesandinterfacemessagessupportedby theC runtime
library (Clib) andtheromeinterfacelibrary (rome_if).

MessageDefiniti ons

ROME usesaSTREAMS modelfor dataflows,whereasingle unit of datain theflow is represented by a linkedlist
of mblk_t datastructures.As this is themostfrequentuseof ROME messages(in termsof thenumber of messages
processed) themblk_t is thedefault parametertypeof all messages,sothereis noneedto write anRCAST macroto
accesstheparameters.This formatis usedby theCOMMAND, FETMBLK, GETMBLK, NEWMBLK, OUTMBLK,
PUTMBLK andRETMBLK messagesbelow.

Unlike standardSTREAMS, the mblk_t type is actually identical to the completeROME_MESSAGE data
type. However, theroutineswhich processthesemessagesshould only access thefieldsspecifically designated as
mblk fields.Thedatadefinition appears asif thefoll owing structureweredeclared:

typedef struct
{

mblk_t *b_cont continuation_block
uchar *b_rptr currentreadpointer
uchar *b_wptr currentwrite pointer
uchar *b_base original baseof buffer
uchar *b_lim absoluteendof buffer
uint *b_type buffer type
uint * immed immediate data
uint * immed1 moreimmediatedata

} mblk_t;
Thedataareaof this buffer extendsfrom b_base to b_lim. Within this area, new datashould bewritten starting

atb_wptr andexisting datashould bereadfrom b_rptr. For thosenot familiarwith theSTREAMS dataflow model,
thefollowing explanation mayserve; for further examplesseetheROME Programmer’s manual. An emptybuffer
is characterisedby having b_rptr == b_wptr, not necessarily at thestartof thebuffer. A dataproducerplaces data
in thebuffer andincrementsb_wptr. Thenumber of bytesof datain thebuffer is b_wptr - b_rptr. In general, adata
consumerreads thebuffer in theorder in which thedatawerewritten,starting at thebytepointedto by b_rptr and
advancingthepointeruntil it meetsb_wptr.

However, the mblk is moreflexible thana simpleproducer/consumermodel. It’s main advantagelies in pro-
cessing protocol stacks which encapsulate higher-level datawith headers and/or trailers. An application (data
producer), requests a buffer from the system.In the ROME dataflow implementation, the request is passeddown
throughtheprotocol stack,allowing eachlayer to modify thesizeof thebuffer beingrequested.The lowestlayer
(usually a device driver) createsanemptybuffer, with b_rptr = b_wptr = b_base andb_lim setto (at least)b_base
+ length. As the buffer is returnedtowardsthe applications,protocol layerscanreserve spaceat the headof the

1



Standard MessageSet

buffer by incrementing both b_rptr andb_wptr. This incrementcanbe dynamically calculatedfor eachrequest,
allowingvariable-sizedheadersto begenerated.Finally theapplicationreceivesan‘empty’ buffer into which it can
place its data,updating b_wptr asit goesandleaving b_rptr unchanged. As thefilled buffer passesback towards
thedriver, theprotocol layerscanretrieve their reservedspaceat thehead of thebuffer by subtracting therequested
amount from b_rptr. Trailerscanbeadded directly at b_wptr. Theresult is thata single buffer canbeprocessedat
multiple layers without needing to copy data.

The sameapproachcan be usedfor datapassing upwards towards the application. By modifying b_rptr,
sucessive protocol headerscanbe strippedoff the databefore reaching the application, which thenseesonly its
own data betweenb_rptr andb_wptr.

The methodof passing the buffer requestsall the way to the driver allows a device driver to allocatebuffer
spaceaccording to its specific needs, usually this meansin uncachedmemory, but somedevices (for exampleon
a VMEbus)musthave their datain a completely separate memoryregion. This cannot guaranteea zero-data-copy
architecture in thecaseof device–device transfersif therequirementsof theinput andoutput devicesaredifferent.

Theb_cont field allows a single operation to span multiple buffers,eachwith its own readandwrite pointers.
This approachis rarelyusedin ROME, asit requiresscatter/gather DMA support in device driversto avoid a data
copy. Oneplacewheremultiple buffers areusedis in theConsoleapplication, to avoid copying linesof datafrom
user-supplied buffers.

Theb_type field allowsthecontentsof thebuffer to befurther identified. Usually this valueis setto M_DATA
indicateduninterpreteddata. Theb_type field mayalsobeusedto identify theuseto which thetwo immed fields
arebeingput. For examplesetting thetypeto M_IP indicatesthatthefirst immed field containsa32bit IPv4address
to which this datagramshould besent.

CLOSE

TheCLOSE messageis sentto terminateanopenmessagepath. It doesnot usetheparameterarea.At thetime the
reply to theCLOSE is generatedthere should beno moremessagesoutstandingon this path(for example buffered
reads or writes). No further messagesareexpected on this path, andany context-dependent dataat the receiving
processmaybefreed.

COMMAND

TheCOMMAND messagecontainsastringbetweentheb_rptr andb_wptr pointersof thesupplied messageblock.
It is expected that the receiving processwill actuponthecontentsof thestring in someway. Thecontentsof the
data buffer should not bemodified,andthebuffer should not befreed.

EVENT

typedef struct
{

int event_type eventcodefor this message
} ROME_T_EVENT;

TheEVENT messageis sentby a processto indicatea registeredevent to thedestination. Mostly, theseevents are
defined by separateeventtypesin othermessagesets,with theirown parameter areas.Thisdatatypeis aplaceholder
type to allow first-level interpretation of incoming EVENT messages (i.e. to extract theeventtypewhich is always
thefirst word of theparameterarea).

2



Standard MessageSet

FETMBL K

The FETMBLK message requeststhat the supplied mblk be filled with data. For this message, the caller must
supply aninitialisedmblk_t with thebuffer already allocated.Thebuffer will befilled, starting at b_wptr andnot
exceedingb_lim. Thereis no guaranteehow muchdatawill bereturned(exept that it will not overflow thebuffer),
but processesshould, in general, try to put asmuchdataaspossible into thebuffer.

FLUSH

The FLUSH message requeststhat any pending output for the message pathbe sentto the destination before the
FLUSH reply is generated. This message may be usedto synchronisedatatransmissions within a system, or to
ensure that datathat would otherwise be buffered(for examplepartial output lines awaiting a newline character)
aresent‘asis’.

GETMBLK

TheGETMBLK messagerequestsabuffer of datafrom thedestination. Thecallersuppliesanuninitialisedmblk_t
structurewhich is filled in by thedestinationwith thereceiveddata. Thereis noguaranteeabout theamountof data
returned. Thebuffer is ownedby the destination processandthecaller mustreturnit with a RETMBLK message
once it hasprocessedthecontents.

NEWMBLK

The NEWMBLK messagesrequeststhat the fields of the supplied mblk_t datastructurebe initi alisedto point to
a buffer supplied by the destination. The minimum sizeof this buffer is passedin the b_wptr field by the caller
(in bytes). Thebuffer is ownedby thedestination processandthecaller mustreturn it with a PUTMBLK message
once it hasbeenfilled with data.

OPEN

typedef struct
{

ROME_URL *openurl parsedURL of openstring
uint mode parsedmodebits

} ROME_T_OPEN;
TheOPEN message is usedto create a new message pathfrom thecaller to thedestinationprocess.Theopenurl
parametercontains a parsed structure which the destination processmay use to identify internal destinations
(for examplea specific file within the filing system). The mode parameter is a bitfield of FILE_READ_FLAG,
FILE_WRITE_FLAG andFILE_BINARY_FLAG, usually derivedfrom themodestring passed to the fopen routine.

Depending upontheprocessing modelof thedestination, it mayallocatecontext-specific informationto repre-
sent this message path,which maybereturnedin thedest_context field of themessage. As long asthecalleruses
the correct interfaceroutines, this valuewill appear in the dest_context field of all subsequent messages on this
path.

OUTMBLK

The OUTMBLK message requeststhat the datain the supplied mblk_t be transmitted by the destination process
to an external device or a further downstream process. Whentransmission is complete(or an error indication is
to be returned) the buffer is returnedunchanged to the caller on the reply. The reply is not generateduntil the

3



Standard MessageSet

destination processhasno further referencesto thebuffer. TheOUTMBLK messageis for usewhenthecaller or
anotherprocessownsthedatabuffer, or whenthecaller maywish to re-transmitthebuffer.

PUTMBL K

The PUTMBLK messagerequeststhat the datain the supplied mblk_t be transmittedby the destination process
to anexternal device or a further downstreamprocess.Whentransmissionis complete (or anerror indicationis to
be returned)the buffer is returned to the buffer pool of the (ultimate) destination process. The buffer musthave
previously beenallocatedby a NEWMBLK message on thesamemessage path(i.e. thebuffer mustbesentto the
processwhich allocatedit). If thebuffer is not ownedby thedestination, anOUTMBLK messageshould beused
instead.Oncethereply is generated, thecallershould not accessany of thefieldsin themblk_t .

A PUTMBLK messagewith zerodatalength (b_rptr == b_wptr) is usedto return a buffer to its allocating
processwithout transmittingany data.Thismaybeused to freeabuffer previously transmittedwith anOUTMBLK
message(for examplewhentheacknowledgement arrives), to freea buffer sentto a differentprocess,or to return
a buffer thatthesender decidedit did not need.

RETMBL K

TheRETMBLK message returnsthebuffer in thesupplied mblk_t to thefreepool of thedestinationprocess.The
buffer musthave beenpreviouslyobtained from thatprocess by a GETMBLK message. Buffersobtained through
NEWMBLK mustbereturnedby a PUTMBLK.

4


