
ETHER_ARP

The ETHER_ARPmoduleimplements the ethernet ARP protocol andcompletesthe ethernet headers for frames
sent by the IP layer. Usually, therewill bea single ‘earp’ process in thesystem,controlling a numberof ethernet
interfaces. Themapping betweeninterface numbersat the earplayer andphysical devicesis soft, andcontrolled
by theconfigurationstringspassed to theprocessat startup.

ProcessInf ormation

PrototypeName earp

Link Order before any PCIor ATA bus drivers

Process Name mustmatchtheconfigurationstringsusedin theIP layer.

Module Options

EARP_P_TRACE If this symbol is defined, the MAC addressesfor machinesaredis-
played asthey are resolved. Settingthis option will alsocause the
Finite StateMachinesymbolsto begenerated.

Configuration Commands

TheEARP processis configuredusingtwo strings passedto it asCOMMAND messages.

config

config ifno i1.i2.i3.i4 m1.m2.m3.m4

Theconfig commandsetstheIP addressandnetmask for theinterfacenumbered ifno. Thenetmask is
usedto determine theaddressrange of theinterface,andsohow many ARPtableentries to allocate
for this interface.This commandcanonly beissuedafterthecorresponding interfacecommand. The
default broadcastaddressis setto thehighestaddresspossible in thenetmaskrange.

Example:“config 0 138.15.103.240 255.255.255.0”

interface

interfaceifno devnamedevindex

1



ETHER_ARP

The interfacecommandassociatesan interfaceat the earplayer with a physical device. The device
is specified by a processname,devname, andan index within that process,devindex, passed in the
schemeandport fields of the openURL respectively. When the interfaceis defined, a local file is
openedto thedevice for theethernetARPprotocol,andthis file is usedto readthelocal MAC address
from thedevice. This command mustbeissued before theinterfacecanbeconfigured.

Example:“interface0 ether0”

ProcessOperation

Theoperation of theEARPprocesscanbedivided into theSTREAMS-stylemessages,whichareexaminedin order
to have thecorrect ethernetaddressesplacedin theheaders,andtheARP protocol processing which terminatesat
this layer. Internally, these two levels of operation are distinguished by the src_context field in the messages.
STREAMS messageshaveanupstream/downstreamlink in thisfield, whereasprotocol messageshaveaninterface
number. This assumesthattheaddressesof contexts cannot besmallpositive integers.

Themodulehasa mainprocessanda queuehandler. Thedescription of the two different levelsof processing
will bedescribedseparately in themessaging below

STREAMS Processing

Because of the needto reserve spaceat the headof the buffer, it is assumedthat the IP processalways uses
NEWMBLK to request buffers andnever supplies a buffer that hasinsufficient spaceat the start for the ethernet
header.

CLOSE messagesarehandledby themainprocess.Thedownstreamlink to thedevice is closed andthelocal
datastructureis freedbeforethereply is generated. Any messagesqueued onpending ARPrequests
will still besent,or returnedupstream.

COMMAND messages arehandledin themainprocessaccording to the‘Configuration’ section above.

EVENT messages arepasseddown to theunderlying device from the queue handler, andthe replies passed
upwards towardstheapplication.

FETMBLK/GETMBLK messages arepasseddown to theunderlying device from thequeuehandler. Thereplies
arepassedupwardstowards theapplicationafter moving thereadpointer pasttheethernetheader.

FLUSH messages arepassed transparently through the process. It is not expected that the IP layer, which
operatesin datagrammode,will issueFLUSH requeststo this process.

NEWMBLK messages are passed down to the underlying device from the queue handler after increasingthe
request sizeto allow for theethernetheader. Thereadpointer is adjustedon thereply to reserve the
header space.

OPEN messages arehandled in the main process. The port field of the URL contains the earpinterface
numberandthe ip_port field containsthe ethernetprotocol selector. The interfacenumberis used
to construct the corresponding URL to openthe device and the queuestructure is initialised for
up/down-stream processing.

OUTMBLK/PUTMBLK messagesareprocessedin the queue handler. If the message hasnon-zero length, the
readpointer is decrementedto expose the space for the ethernet header. If the packet is of type

2



ETHER_ARP

M_IPDATA thentheb_immedfield is assumedto contain thedestinationIP address,which is used
to completetheethernetheader. otherwiseit is assumedthattheapplication hascompletedthefields
itself. If thedestination IP addressis not in theIP cache,themessage is heldandtheARP protocol
initiatedto resolvetheaddresswithin themainprocess,otherwisethemessageis passed downstream
to thedevice.Repliesarepassed backupstream,afterputting thereadpointerbackafter theethernet
header (to allow for re-transmissions).

RETMBLK messages arepasseddown to theunderlying device from the queue handler, andthe replies passed
upwards towardstheapplication.

ProtocolProcessing

Whenan IP addressis not in the ARP cache, the messageis passed into the main processto start ARP protocol
processing. The protocol is implemented asa small finite-statemachine for eachpotential IP address.The main
issue in processing theprotocol is noting whetheror not anIP addresshasa messagewaiting for resolution. Only
onemessageis kept for each IP address,latermessages replaceearlier ones, which arereturnedto thesender. As
thelink is not reliable, eachARPrequest is re-transmitted on a timer, up to a maximumnumberof times.

IDLE PENDING OK

LOOKUP save requestsend
requeststart timer-
>PENDING

return old messagesave
new message

(ignored)

RESOLVED setARPentry->OK setARPentrysendsaved
message->OK

(ignored)

TIMEOUT (does not occur) too many retries?Y:
return old message—
–>IDLEN: (re)-send
requeststart timer

(ignored)

In order that machines maychange their MAC addresses,ARP entries time out slowly. Associatedwith each
entry is an ‘epoch’ which changesevery minute. Entriesolder thanfive minutesareremoved from the cache,so
forcing a new ARP request the next time they areused. Within the earpprocess, the messages arehandled as
foll ows:

EVENT messages are sentwhen the driver replies to the configuration request with an indication that it
supports event notifications. Replies containing card insertion eventscause the interfaceto be re-
initialised.

GETMBLK messages aresetup whenthe interfaceis configured. Replies contain either responsesto outgoing
ARP requests or requestsgeneratedby other machines. Theprocessrespondsto requestsfor its IP
address,andprocessesrepliesto its own requestsaccording to thestatemachineabove.

NEWMBLK messages areusedto requestbuffers from thedriver for protocol messages.

PUTMBLK messagesareusedto transmitARPrequestsandresponsesto thedriver. Eventhough amessagemay
needto bere-transmitted, a new buffer is allocatedeachtime, to avoid tying up driver resources.

RETMBLK messages areusedto return receivedbuffersafter thecontentshavebeenprocessed.

TIMEOUT messages areusedto control the re-transmission of ‘lost’ ARP requestsaccording to the statema-
chineabove. Longer-intervaltimersareusedto invalidate old ARPentriesat the‘epoch’ level.

3



ETHER_ARP

Shared Library Macrosand Routines

earp_clear_cache

void earp_clear_cache(
int ifno)

Theearp_clear_cacheroutineclearstheARPcacheassociated with theinterfacenumberedifno. Pass-
ing a valueof -1 clears all theARPcaches.

Debug Support

The earp_dump_cache routine is callablefrom the debuggerandprints the contentsof all the ARP cachesto the
polled-mode I/O interface.

4


