
RPC

The RPCmoduleimplements the RemoteProcedure Call protocol, running on top of UDP andthe ‘portmapper’
service. It alsoprovidesthesharedlibrary for marshalling andunmarshalling argumentsin XDR format.

ProcessInf ormation

PrototypeName pmap

Link Order does not matter

Process Name “pmap”

Data Definitions

Theheader file rpc.h containsdatadefinitionsfor thefollowing exporteddatatypesandstructures:

RPC_CALLBACK Thisdefinesthetypeof thecallbackfunctionusedto link remotepro-
cedurecall returns to thecorrespondingapplication layer processing.
Thedefinition is
void (*)(int , ptr , ROME_MESSAGE *)
wheretheint andptr parametersarespecifiedonthecall to rpc_setup_for_reply
and the ROME_MESSAGE is the incoming message holding the
procedurereturn values.

RPC_FILE An RPC FILE representsa data path to a remoteservice. Asso-
ciated with the file are the remoteprogram and version being ac-
cessed. The tid andtid_pending fieldscontain transactionidentifiers
which identify individual requests. The structure also contains the
userandgroup information usedto authoriserequestson thisdata, in
the auth_code, machine, uid, gid, gids andgidc fields, anda list of
pending requestsrootedat r_root.

RPC_PROCCALL This datastructure is used to hold the datafor an incoming remote
procedurecall within theportmapperfunction.

RPC_REQUEST An RPC_REQUESTdatastructureholdasingle instanceof aremote
procedurecall. It contains a pointer to thetransportlayerdataflow in
down, andthe message containing the marshalled argumentsin out.
The cont, context and state fields contain the callback information

1

RPC

usedto passthe return valuesbackto theapplication. Thestructure
alsocontainsa timer token ttoken usedto control retransmissionsof
requestsfor which no responsehasbeenreceived.

ProcessOperation

Themodulehasonly amainprocesswhich is usedfor theportmapperfunction. Currently theportmapperfunction
is not implementedfor incoming calls.

Shared Library Macrosand Routines

Use of the remote-procedure-call library is a three-stageprocess. Firstly a dataflow must be initi alised to the
remote service, usingrpc_open. This returns a handle to an RPCFILE structure on which requestscanbe sent.
Individual requestsarecreatedusing rpc_start_call, theper-call argumentsareaddedusing thexdr_add functions
andtheprocedureis invokedby rpc_end_call. TheRPClibrary is unpended,andtherpc_setup_for_reply routine
is usedto link a callback function to the outgoing requests. All RPCreplies arehandled by a commonroutine,
rpc_reply_handler, which calls theappropriatecallbackfunction,at which point theresults canberetrievedusing
thexdr_get functions. Thedataflow is terminatedby therpc_close routine.

Thelibrary alsosupportsthe‘indirect’ service call through theportmapperfunction. In this model, theremote
procedure call is embedded in an outer call to a common‘portmapper’ function on the remote machine. In this
way, theindividual port numbersfor servicesdo not need to beused.

rpc_add_gid

void rpc_addgid(
RPC_FILE *rval,
uint gid)

Therpc_addgid routineaddsthegroupidentifier gid to thelist of groupsto besentin theauthorisation
partof all subsequent RPCson rval.

rpc_end_call

void rpc_end_call(
RPC_FILE *val,
RPC_REQUEST *ret,
uchar *sp)

Therpc_end_call routinecompletesandtransmitsa remoteprocedurecall request. Therequestret is
senton thedatapathval. Thesp valuepoints to theendof themarshalled arguments(for exampleas
returnedby thelastcall to anxdr_add routine).

rpc_close

void rpc_close(
RPC_FILE *val)

The rpc_close routine terminatesthe datapath associated with the RPC_FILE val andfrees the re-
sourcesused by the path. This routine should not be called whena remoteprocedurecall is still in
progresson thedatapath.

2

RPC

rpc_open

RPC_FILE *rpc_open(
ROME_URL *where,
uint prog,
uint version)

The rpc_open routine creates a new datapath to version of the prog service on the remotemachine
where. If thewhere structuredoesnot specify thetransportprotocol,UDP is selectedby default. The
URL mustcontain at leasttheremoteIP addressandremoteport number for therequestedservice.

rpc_portmapper_callit

uchar *rpc_portmapper_callit(
RPC_FILE *map,
uint service,
uint version,
uint proc,
RPC_REQUEST ** ret)

Therpc_portmapper_callit functioninitialisesaremoteprocedurecall to makeanindirectcall through
the portmapper ‘callit’ operation. map should be a remoteprocedurecall file previously opened to
the portmapperservice on the remotemachine. The routine initialises a procedurecall to the proc
procedure of version version of remoteservice service. The ret value is initialised to point to the
request structure for this call. The routine returns a pointer which canbe usedto addcall-specific
argumentsto therequest.

rpc_portmapper_getport

int rpc_portmapper_getport(
char *host,
uint prog,
uint version,
uint protocol,
uint *port)

Therpc_portmapper_getport routineusestheportmapperfunction ontheremotemachinenamedhost
to find theservice port number for theremoteprocedurecall programprog, version version using the
protocol protocol. The protocol valueshould be oneof IP_PROTO_UDP or IP_PROTO_TCP. The
corresponding service port on theremotemachine is returnedin theport variable. Theroutine returns
0 if theport valueis set,anda non-zeroerror codeotherwise.

rpc_portmapper_open

RPC_FILE *rpc_portmapper_open(
char *host)

The rpc_portmapper_open opens a datapath to the portmapper service on the specifiedhost. The
routinereturnsahandle to amRPC_FILE thatcanbeusedto generateremoteprocedurecall requests
to theportmapper, or NULL if thedataflow cannot beestablished

3

RPC

rpc_reply_handler

void rpc_reply_handler(
ROME_MESSAGE *mptr)

Therpc_reply_handler routine is a generic message handler for all replies to remoteprocedurecalls.
Theroutinecallsthecontinuation functionassociatedwith thismessage(assetby rpc_setup_for_reply)
thenreturnsthedatablockandfreestheresourcesassociatedwith themessage.Thisroutineis suitable
for placing in a list of handlerspassed to therome_generic_handler routine.

rpc_setuid

void rpc_setuid(
RPC_FILE *val,
uint uid,
uint gid,
char *machine)

The rpc_setuid routine setsthe parametersfor UNIX-style authorisation on all subsequent requests
senton thedatapathval. Theuid andgid values area usernumber andgroup numberauthorising the
requestsandthemachine parameter is a string identifying thelocal machine.

rpc_setup_for_reply

ROME_MESSAGE *rpc_setup_for_reply(
RPC_REQUEST *rval,
RPC_CALLB ACK cproc,
int state,
ptr cx)

Therpc_setup_for_reply routinepreparestheRPClayerto processtheresponseto anoutgoing request
representedby rval. Thereturnedvalueis a pointer to a message which will contain thereply (sothat
theapplicationmaywait for thatspecific message). Whenthatmessage is passedback into theRPC
layer through the rpc_reply_handler routine, the callback procedurecproc will be called with state
andcx asits integer andpointer argumentsrespectively.

rpc_setup_service

RPC_FILE *rpc_setup_service(
char *hostname,
uint prog,
uint version)

Therpc_setup-service routine returnsanRPCfile connectedto thecorrect version of theRPCservice
numbered prog on the machine hostname. The routinesuses the port mapper to locate the port on
which theservice is running. If theservicecannot beaccessedtheroutine returns NULL.

rpc_start_call

uchar *rpc_start_call(
RPC_FILE *rval,
uint procno,

4

RPC

uint size,
RPC_REQUEST ** ret)

The rpc_start_call routine preparesa new remoteprocedurecall on thedata pathrval, which should
be setup to a service on a remotemachine. procno is the remoteprocedure being invoked on that
service andsize is the maximumsizeof the requestwill be generated. The routine places a pointer
to the REQUEST structure for this call in the ret variable, andreturns a pointer to the start of the
argumentarea, into which datamaybeplacedusing thexdr_add routines.

rpc_start_reply

uchar *rpc_start_reply(
RPC_FILE *val,
ROME_MESSAGE *mp)

The rpc_start_reply routine handlesthe initial commonpart of result processingfor all remotepro-
cedure call returns. mp contains a reply received over the val datapath. The routine locates the
corresponding request basedon thetransaction identifier andchecks thereturneddatafor errorcodes.
If thereply representsavalid returnfrom theremoteprocedurecall, theroutinereturnsapointer to the
startof the marshalled arguments,which canbe extracted usingthe xdr_get routines. If thereis any
error in thereply, theroutine returnsNULL.

xdr_add_binary

uchar *xdr_add_binary(
uchar *where,
uchar *what,
uint len)

Thexdr_add_binary routine addslen bytesof data starting at what into theargumentstructureof the
remoteprocedurecall, starting at where. Thereturnedvalue is thepointer position after theendof the
argument.

xdr_add_int

uchar *xdr_add_int(
uchar *where,
uint what)

Thexdr_add_int routine addsthe32-bit integerwhat into theargument structureof theremoteproce-
durecall, starting at where. Thereturnedvalueis thepointerposition after theendof theargument.

xdr_add_string

uchar *xdr_add_string(
uchar *where,
char *value)

The xdr_add_string macroaddsthe NUL-terminated string value to the argumentlist at the position
specifiedby where. Themacrocallsxdr_add_binary for thelength of thestring,andreturnsthepointer
to thenext characterposition in theargumentlist.

5

RPC

xdr_get_binary

uchar *xdr_get_binary(
uchar *where,
uchar * to,
uint * len)

Thexdr_get_binary routineextractsa sequenceof binary octetsfrom themarshalled arguments,start-
ing at where, into the arraypointed to by to. len is set to the number of bytes in the array, andthe
routinereturnsa pointerto thenext valuein theargument list.

xdr_get_int

uchar *xdr_get_int(
uchar *where,
uint *what)

Thexdr_get_int routineextractsa32-bit integerfrom themarshalled arguments,starting atwhere, into
thevaluewhat. Theroutinereturnsa pointerto thenext valuein theargument list.

xdr_get_string

uchar *xdr_get_string(
uchar *where,
uchar * to)

Thexdr_get_string routineextracts characterstringfrom themarshalledarguments,starting at where,
into thevalueto, which is terminsedby a NUL. Theroutinereturnsa pointer to thenext valuein the
argumentlist.

xdr_skip_binary

uchar *xdr_skip_binary(
uchar *where)

Thexdr_skip_binary routine ignoresasequenceof binaryoctetsin themarshalledarguments,starting
at where. Theroutine returnsa pointer to thenext valuein theargumentlist.

6

