
IP

The IP module implements layer3 of the InternetProtocol. It processesIP headerson hehalfof transport srvices
(e.g. TCPor UDP). It alsocontainsthe Internet Control Message Protocol(ICMP) implementation. This imple-
mentation of IP is intendedfor end-userapplications using standardtransport layers. The routing portion of the
code would needto beconsiderably improvedif this werethethebasisof a layer-3router with multiple interfaces
in thecore,or edge, of a largenetwork.

ProcessInf ormation

PrototypeName ip

Link Order does not matter

Process Name “ip”

PrototypeName icmp

Link Order does not matter

Process Name “icmp”

Configuration Commands

The IP processis controlled usingthreestringspassed to it asCOMMAND messages. It will not attemptto open
dataflows to any output devicesuntil it receivesthe appropriateconfiguration commands. All configuration data
for theprocessis supplied from sourcesexternal to it, makingtheIP moduleportableacross all implementatins.

config

config ifno i1.i2.i3.i4 m1.m2.m3.m4devnameprotocol

Theconfig commandsetsthelocal IP addressandnetmaskfor theinterfacenumbered ifno. The
netmaskis usedto determinetherouting range of theinterface.Theinterfaceis associated with the
lower layer device devnameandprotocol selects IP packetswithin that layer. For theIP moduleto
operate correctly over anethernet,thedownstreamdevice mustbecapable of supplying the
IP-addressto MAC-address mapping informationto completetheethernetheader. This usually
meansthat interfacesareopenedto the‘earp’ processandnot directly to theethernetdriver itself.

Example:“config 0 138.15.103.240 255.255.255.0 earp:0 2048”

1



IP

route

routei1.i2.i3.i4 m1.m2.m3.m4g1.g2.g3.g4 ifno

The route commanddefinesa gateway on an attachedinterfacenetwork andthe routing options for
that subnet. IP addresseswith the samemasked subnet prefix as the IP addresswill be sentto the
(local) machine specifiedby thegateway addresson the ifno interface.

Example:“route 0.0.0.00.0.0.0138.15.103.254 0”

remove

remove ifno

The remove commandremovesall routes associatedwith the ifno interfaceandclosesthe IP packer
receiver file for that interface.Thecommandis usually generatedby anapplication in responseto an
eventindicatingthataremovable interfaceis longerpresent.Any application-level filescurrently open
to thatdevicewill not beableto send datauntil a new interfaceor routeis definedto replaceit.

Example:“remove 0”

Data Definitions

Thefile ip.h containsdefinitionsfor the IP_HEADER, ICMP_HEADE R, TCP_HEADER andUDP_HEADER
protocolheaders.It alsodefinestheIP_STATS andUDP_STATS structuresusedto hold traffic anderrorstatistics.
Thefile alsocontains a number of definitionsfor protocolsandoptionsfor thevarious IP services.

ProcessOperation

The operation of the IP module canbe divided into the IP layer-3 processingandthe ICMP protocol processing
parts.

IP Processing

The IP layer handles fragmentation, andinsertion of IP options andso it terminatesthe application dataflow and
copies the datato or from the buffers destined for the devices. This alsohasthe usual side-effect of copying the
data to or from anuncachedbuffer.

IP Addr essing

In general, an IP packet requires two destination addresses. One is the final destination of the packet, and is
placedin themain IP header. Theother is theaddressfor the ‘next-hop’. For machineson the local subnet, these
addressesarethesame.For machineson a differentsubnet, thenext-hop IP addressis theaddressof thegateway
on theappropriate localsubnet.WhenIP messagesarepasseddownstream,theIP header contains thefinal address
andtheb_immedfield of thefirst mblk in thechaincontainsthenext-hop address.This is signalled by setting the
b_typefield of themblk to M_IPDATA.

2



IP

IP options

TheIP codesupportsIP option processing,but doesnot itself take any action in responseto options.Whenoptions
areset,they aresenton the next availabledatapacket, andthe optionsarecleared. Optionsmay besetin oneof
two ways:

1. asparameterson theURL passed to OPENin theurlpath field.

2. asthedatapartof anM_PROTO mblk sentat theheadof a frame(or asa frameby themselves).

In bothcases theoptionsarespecified asa string in theform:

�����������
	���
�������������������� �����������
	���
!�����"�#�$�

whereoption is a two-character hexadecimal numberandvalueis a stringof byte in hexadecimal.The‘?’, ‘=’
and’,’ charactersareliteral separatorsprovidedto make thesyntax morehuman-readable. In the IP layer thehex
numbersareconcatenated togetherinto a single sequenceof bytesandroundedto a multiple of 4 byteswith no-op
codes. This meansthat options that have variable-length values musthave the lengths correctly encoded in the
string. Options receivedon incoming packets aredecodedinto thestring form andpassedup to thecorresponding
transportlayerasseparateM_PROTO messages. They arealsoincludedin thedatamessagewhich foll ows in the
original raw binary.

Other optional fields in the IP header, suchas type-of-service and the do-not-fragment bit, are set by the
application in thedummyIP header supplied for output buffer.

IP Fragmentation

TheIP codeassumesthat local applicationsdo not generatepackets thatrequire fragmentation, since this imposes
anextraoverheadonthedataflow. However, it doesprocessincoming fragmentedpackets.Fragmentsarecollected
andpassed upto theapplication asasinglemessageblock. If afragmentedpacket containsoptions,only theoptions
on thefirst packet of the fragmentarepassedto theapplication. Theothers arediscardedwhenthe fragments are
concatenated.

Active and Passive Opens

Becausethe IP layer doesnot examineany of the transport-layerheaders, it cannot de-multiplex packetsfor dif-
ferent transport-level applications. Instead it passesall packets for a singleIP protocol-type upwards on a single
file, createdby sending anopen requestto theIP layer with no destinationIP address.This is termeda passive (or
listener)open. In order to transmit packets, the IP layer mustknow thedestination addressof thepacket. This is
determinedwhenthefile is opened.A file havingadestinationIP addresssetin its openURL is anactive(sending)
file. Packetsarenever passedupwardson active files,nor maypacketsbesent on passive files.

Err ors

Most errors (for example incompletefragments)arehandled silently within the IP layer. The only case wherea
responseis explicitly generatedover thenetwork is whena packet is receivedfor a protocol for which thereis no
passive file currently open. TheIP layer generatesanICMP ‘no protocol’ message backto thesender.

3



IP

Messages

CLOSE messages arehandled by the main process. All outstanding receive messagesare returned to the
sender andthelocal datastructureis freed before thereply is generated.

COMMAND messages arehandledin themainprocessaccording to the‘Configuration’ section above.

FETMBLK messagesarenotsupportedby theIP process,becauseit will alwaysdeliver full IP packetsupwards.
Thequeue handler callsrome_fatal if anapplication sendsit a FETMBLK request.

GETMBLK messages areaddedto the receive queueof the file. Replies to GETMBLK messages indicate in-
comingdatafrom theinterface.Thedatablocksarevalidatedandpassedupwards to theappropriate
application, after option processinganddefragmentation. The application receivesthe block with
thepointerat thestart of theIP header not,asmight beexpected, at thestart of thetransportheader,
sinceall current IP transport layersrely on fieldsprovidedonly in theIP header.

FLUSH messages arereplied to immediately from within thequeuehandler, asthe IP layerdoesnot buffer
any outgoingdata.

NEWMBLK messages areprocessedwithin thequeuehandler. A buffer of a suitable sizeis allocatedandspace
reservedandclearedat thestart for a standard IP header before beingreturnedto thecaller.

OPEN messages arehandled in the main process. The ipaddr field of the URL determinesif this is an
active or passiveopen(seeabove)andtheport field containstheIP protocol identifier. Thecontents
of the urlpath field areusedto setthe initi al IP options. If possible the route for an active openis
determinedandthe interfaceis fixed. By the time a dataflow reachesIP, the destination machine’s
IP addressshould have beenresolved(for exampleusingtheDNS or NIS services). TheIP process
doesnot look at thehostfield in theURL, only the ipaddr field.

OUTMBLK/PUTMBLK messagesareof zerolength areprocessedin thequeuehandler, wherethebuffer is freed.
Otherwisethe messagesarepassed to the main process. The message musthave beensenton an
active file for which thereis a current routable interface,otherwise it is returned with an error. A
new message is allocated,any IP options in anM_PROTO messagearehandled andthedataportion
is copied to anew buffer allocatedby thedriver in thenew message.TheIP header in thenew buffer
is completedusing thedatasupplied on theOPENandoptionssetin theprototypeheader supplied
in themessage. Thegateway field is setin the downstreammessage andthedata arepassed to the
driver for transmission. repliesto PUTMBLK messages indicatetransmissionof thebuffer, andthe
message, which wasallocatedin theIP layer, is freedin thequeuehandler.

RETMBLK messages areprocessedin thequeue handler wherethedatabuffer is freed.

ICMP Processing

TheICMP serviceoperatesasaseparateprocess,but is co-locatedwith theIP moduleasit is amandatory protocol
for IP. Theimplementation is designedfor end-userembedded systems,andsooffersonly minimal functionality.

GETMBLK messagesaresetup to theIP processwhenICMP starts. Replies indicateincoming ICMP messages,
of whichall areignoredapartfrom ECHOrequests,whichgeneratethecorresponding replies,sothe
machineis ‘ping’able.

4



IP

PUTMBLK messagesareusedto requestICMP protocol transmissions, usually to indicatenon-existant services.
In particular, UDP will generateunknown port messagesso that ‘traceroute’ terminatescorrectly.
Themessages contain anincoming IP packet in theb_cont field andtheICMP typeandcode fields
in b_immedandb_immed1respectively. Because theIP process uses theICMP processto generate
errors, theIP header is copied from theincoming message to temporary storageandthereply is sent
before any other operations, to prevent IP/ICMP processdeadlock. The processthenopensa new
ICMP-protocol file to thedestination, formatsandtransmits therequestedprotocolpacket andcloses
thefile.

Shared Library Macrosand Routines

icmp_report

void icmp_report(
ROME_MESSAGE *mptr,
int type,
int code)

The icmp_report routine requests an ICMP control messagebe sent to the source of the IP packet
passed in themptr argument,with packet type typeandsub-codecode. Thefirst partof theIP header
maybereturnedto thesender in theICMP message,depending on themessage type.

ip_route

int ip_route(
uint dest,
uint * route)

The ip_route routine setsthe route parameterto the addressof the local interfaceon which a packet
to dest would besent. Theroutine returns0 if the packet would be routed, non-zero otherwise. The
purposeof this routine is to allow transport layers to determine which local IP addresswill be setin
theIP header whenthepacket is sent, andsocomputethecorrectpacket checksum.

ip_stats

IP_STATS * ip_stats(void)

The ip_statsroutine returnsa pointer to thestatistics structuremaintainedby theIP layer.

5


