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On Nuclear Spin Measurement using Coherent Electron Spin Transport
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We propose an experimental setup to study spin-dependent magneto-transport through quan-
tum dot. We show that due to spin-flip transitions, generated by the spin-orbit interaction, the
spectral density of the tunneling current develops a distinct peak at the frequency of Zeeman split-
ting. We argue that under suitable conditions the peak’s width can be sufficiently narrow to allow
for detection of magnetization produced by few nuclear spins. The proposed g-factor engineered
heterostructure can be utilized in measurements of single qubits in several schemes for quantum
information processing in solid state systems.
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The problem of single spin measurement, electronic or
nuclear, apart of its great fundamental importance, has
recently attracted much practical interest in the light of
rapid development of quantum information science and
its potential applications in condensed matter systems. A
number of quantum computing proposals have recently
been suggested [1–3], preliminary experiments to fabri-
cate and control a few quantum bit/qubit systems have
been carried out or contemplated [4]. Among these a
nuclear spin represents a perfect candidate for a role of
qubit for quantum computers. Indeed, its longitudinal
and transverse relaxation times in certain materials, such
as in P donors in Si are seconds and can potentially be
extended by at least several orders of magnitude by using
special techniques [1].

There is, however, a significant disadvantage of nu-
clear spin qubits: because of their tiny magnetic mo-
ments the possibility of control of single nuclear spins
is rather obscure. For this reason it was recently sug-
gested to use scanning tunneling microscopy (STM) tech-
niques for measurement of single nuclear spins, which
seems to be free from the above disadvantages [3]. The
proposal utilized an experimental observations of a dis-
tinct peak in the STM tunneling current spectrum in the
presence of external constant magnetic field B [5]. This
peak has been found at the frequency equal to that of
electronic Zeeman splitting and therefore was associated
with a modulation of the tunneling current by the Lar-
mor precession of a nearby magnetic impurity. Yet, no
self-consistent microscopic theory of the observed phe-
nomenon [5] exists in the literature.

In this Letter we suggest a novel approach to the prob-
lem of local spin measurement, that may as well ex-
plain the above described STM experiments [5]. Our
approach is based on resonant tunneling through micro-
scopic/mesoscopic structures (impurities, quantum dots,
etc), which energy levels are spin-split by an external
magnetic field. In this case the spin-orbit coupling causes

the spin-flip transitions resulting in coherent effects in the
tunneling current [6]. We demonstrate below that these
spin-flip transitions generate a distinct peak in the tun-
neling current at the Zeeman splitting frequency. If the
width of this peak is rather narrow ≤ MHz, as observed
in the experiments [5], one can hope to resolve hyperfine
structure of the spin center from the peak’s location in
the spectrum, etc., and thus be able to measure a state
of the nuclear spin of a given impurity atom [3].
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Fig. 1: Quantum dot coupled to two contacts. The
right contact has a g-factor different from that of the left
contact and the dot. The tunneling with spin flip gener-
ates effective coupling between the two Zeeman sublevels
in the dot.

Let us consider a g-factor engineered heterostructure
(for example Si/Ge) schematically shown in Fig. 1. There
are two regions, to the right and to the left from the
dotted line denoting the interface, that have different g-
factors, g1 ≈ 2 for the left region and g2 6= 2. There are
two contacts/Fermi reservoirs in each of the regions. The
left region also contains a quantum dot so that when po-
tential difference V is applied between the two reservoirs,
electrons can tunnel from left to the right reservoirs via
the dot. The states of two reservoirs are filled up to Fermi
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energies µL and µR respectively, where µL − µR = eV .
We assume that there is a single discrete level in the
dot due to spatial quantization, which is spin-split by
an externally applied magnetic field. We also assume
that the dot is doped with impurities, having nonzero
nuclear spin. If these are spin polarized, an electron in
the dot will experience a magnetic field B = B0 +Bhyp,
where B0 is external field and Bhyp is an effective field
produced by the hyperfine coupling of the electron and
nuclear magnetic moments, which is proportional to the
degree of polarization of nuclear spins. Therefore if one
can detect the splitting between the two Zeeman levels
of the electron in the dot, one can measure the nuclear
spin polarization produced by the nuclei in the dot, pro-
vided that detection of the splitting can be carried out
with sufficient precision to resolve the contribution due
to Bhyp. In what follows we show that by measuring
the power spectrum of current fluctuations in the pro-
posed heterostructure one can resolve Bhyp produced by
several tens of nuclear spins within the present day tech-
nology and potentially allow one to detect polarizations
produced by fewer nuclei.

We model our system by the Hamiltonian H = HL +
HR + HS + HC + HT where the first two terms rep-
resent the unperturbed states of two contacts, HL =
∑

l,s εlsa
†
lsals and HR =

∑

r,s εrsa
†
rsars, where a†ls (a†rs)

creates a fermion/electron at the energy level εl (εr) and
with spin s in the left (right) reservoir. The states in the
dot are described byHS =

∑

s εsn̂s, where n̂s = a†sas and
a†s creates an electron in the dot at the level with spin s.
In the presence of magnetic field B the levels are split,
so that ε−1/2 − ε1/2 = gβB ≡ E, Fig. 1, where g is the
effective g-factor of the spin center and β is Bohr’s mag-
neton. The term HC =

∑

s
U
2
n̂sn̂−s, where n̂s = a†sas,

and a†s corresponds to the Coulomb charging energy for
the electron in the well. In what follows we will assume
the case of complete Coulomb blockade, i.e., U → ∞,
thus allowing for only one electron to occupy the spin
states in the well.

The tunneling transitions between the left reservoir,
the dot and the right reservoir are represented by the
Hamiltonian:

HT =
∑

l,s

Ωl

(

a†lsas + a†sals

)

+
∑

r,s,s′

Ωrss′

(

a†rsas′ + a†s′ars

)

. (1)

Here we use gauge in which the tunneling amplitudes Ωl

and Ωrss′ are real. Note that our model accounts for
possible spin flip in tunneling transitions from the dot
to the right reservoir. The mechanism generating such
transitions is similar to that of spin scattering by non-
magnetic impurities in semiconductors [9]. Due to spin-
orbit interaction, relatively strong in the right contact
in our case, the orbital and spin states of the electron

in the right reservoir are mixed, resulting in effective g-
factors for the electrons there to be different from 2. The
eigenstates of HR are represented by Kramers doublet,
|ψr,s=1/2〉 = ur| ↑〉+vr| ↓〉 and a Kramers conjugate state
|ψr,s=−1/2〉, where ur and vr are functions of spatial co-
ordinates only, and |v| ∼ O(|∆gu|), ∆g = g − 2 [9]. We
have assumed the spin orbit coupling in the left reser-
voir and the dot is much weaker (g ≈ 2), so that we can
neglect by the spin-orbit mixing effect there. In order
to evaluate the tunneling matrix elements for transitions
from the dot to the right reservoir, given by the second
term in Eq. (1), one can utilize Bardeen’s formula [10]:

Ωrss′ = 1/2m
∫

d~S · (φ∗s
~∇ψr,s′ − ψr,s′

~∇φ∗s), where the
integral is over any surface lying entirely within the tun-
neling barrier, separating the dot and the right reservoir,
and the wave functions φs (state with spin s in the dot,
|φs〉 = |φ〉|s〉) and ψr,s′ are smoothly continued under
the barrier; m is electron’s mass and h̄ = 1. It is obvious
that the states ψs under the barrier are still spin-orbit
mixed due to the continuity condition. Therefore the
tunneling matrix elements, corresponding to the transi-
tions from the resonant level to the right reservoir with-
out spin flip, are Ωrss = 1/2m

∫

d~S · (φ∗ ~∇ur − ur
~∇φ∗),

and the matrix elements of transitions accompanied by
spin flips are Ωrs s̄ = 1/2m

∫

d~S · (φ∗ ~∇vr − vr
~∇φ∗);

s̄ ≡ −s. The two transition amplitudes are related as
|Ωrss̄| ∼ O(|∆gΩrss|).

In what follows we adopt approach developed in Refs.
[7,8]. We construct the time dependent wave function of
the system as

|Ψ(t)〉 =
{

b0(t) +
∑

l,s

[bls(t)a
†
sals + bls̄(t)a

†
sals̄]

+
∑

l,r,s

[blrs(t)a
†
rsals + blrs̄(t)a

†
rsals̄] + ...

}

|0〉 , (2)

where the “ground” state |0〉 corresponds to the situation
when all states below Fermi energy in the left contact are
filled, while all states above Fermi energy in the right con-
tact are empty. The above wave function is a superposi-
tion of all possible particle-hole combinations that can be
generated by the Hamiltonian H ; note that H conserves
the total number of particles in the system. Thus the first
term in Ψ is the amplitude of the unperturbed state, i.e.,
when no excitations in the system is present, the second
term describes a state in which a hole is created in the
left reservoir and a particle with the same spin occupies
the resonant level, etc. The above wave function satisfies
the Schrodinger equation i|Ψ̇〉 = H |Ψ〉.

In order to describe transport in our model we in-
troduce probabilities for the dot to be empty or occu-
pied, provided the a certain number of electrons have
been passed through the junction. The level can be ei-
ther empty, with probability σn

aa, where the subscript
aa indicates that there is no electrons in the dot and
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the superscript n describes that n electrons have ar-
rived in the right reservoir/collector, or the level can
be filled with probabilities σn

bb and σn
cc, where bb indi-

cates that the lower Zeeman sublevel s = 1/2 is filled,
while cc stands for the upper Zeeman sublevel s = −1/2
being filled. Occupation of both Zeeman levels in the
dot by two electrons is prohibited in our model by
the infinite charging energy U ; see Refs. [7,8] for de-
tailed discussion. We also introduce the off-diagonal el-
ements σn

bc describing coherent superpositions of states
on the upper and lower Zeeman levels of the electron
in the dot. σn

ij ’s are related to the wave function |Ψ〉

as σ0

aa = |b0|
2, σ0

bb =
∑

l,s=1/2
|bls|

2 +
∑

l,s=−1/2
|bls̄|

2,

σ1

aa =
∑

l,r,s[|blrs|
2 + |bl,r,s̄|

2], etc.
Following steps of Refs. [7,8] one derives the rate equa-

tions for the density matrix σ from the Schrodinger equa-
tion for the wave function |Ψ〉. These rate equations for
a general case are presented in [8]. One finds for our case:

σ̇n
aa = −2ΓLσ

n
aa + ΓR

(

σn−1

bb + σn−1

cc

)

+ ∆ΓR

(

σn−1

bc + σn−1

cb

)

, (3a)

σ̇n
bb = −ΓRσ

n
bb + ΓLσ

n
aa −

∆ΓR

2
(σn

bc + σn
cb) , (3b)

σ̇n
cc = −ΓRσ

n
cc + ΓLσ

n
aa −

∆ΓR

2
(σn

bc + σn
cb) , (3c)

σ̇n
bc = iEσn

bc − ΓRσ
n
bc −

∆ΓR

2
(σn

bb + σn
cc) (3d)

Here ΓL,R = 2πΩ2

L,R(εs)ρL,R(εs) and ∆ΓR =
2πΩR(εs)δΩR(εs)ρR(εs), where we denote Ωrss ≡ ΩR,
Ωrss̄ ≡ δΩR. In derivation of Eqs. (3) we assumed
that the coupling constants Ω’s and the densities of states
ρ’s are weakly dependent on energy, and so ρL,R(εs) =
ρL,R(εs̄), ΩL,R(εs) = ΩL,R(εs̄) and thus rates ΓR,L for
the electrons tunneling into and out of the dot are inde-
pendent of energy. We also assumed that the bias voltage
condition, V � ΓL,R, which is essential for derivation of
Eqs. (3). One sees from Eqs. (3) that the two Zeeman
levels in the dot are coupled with each other due to spin-
flip transitions through continuum with the rate ∆ΓR.
We also assume that ΓL,ΓR ≥ ∆ΓR.

By summing Eqs. (3) over the number of electrons in
the right reservoir one obtains the “standard” Bloch-type
equations for the reduced density matrix σij =

∑

n σ
n
ij

with i, j ≡ a, b, c. These equations, which look essentially
identical to Eqs. (3), describe the state of the resonant
level independently of the states of the reservoirs.

From Eqs. (3) one can derive the dynamics for the ex-
pectation value of the tunneling current by assuming that
the right reservoir is properly isolated from the external
fields [11]. In this case the tunneling current is given
by 〈I(t)〉 = ie〈Ψ(t)|[H, N̂R]|Ψ(t)〉, where H is the total
Hamiltonian and N̂R =

∑

r,s a
†
rsars is the operator of the

electron numbers in the right reservoir. Using Eq. (2)
one finds that the average current can be written as

〈I(t)〉 = e〈ṄR(t)〉, where 〈NR〉 =
∑

n n(σn
aa + σn

bb + σn
cc).

Using Eqs. (3) for σ̇n, one can sum over n thus obtaining

〈I(t)〉 = eΓR[σbb(t) + σcc(t)] + e∆ΓR[σbc(t) + σcb(t)] .

It is easy to check that the transient behavior of the aver-
age current is an oscillatory one (due to coherence terms
∼ σbc) with frequency equal to E and approaching sta-
tionary value

〈I(∞)〉 =
2eΓLΓR

(

E2 + Γ2

R − ∆Γ2

R

)

(2ΓL + ΓR) (E2 + Γ2

R) − 2ΓR∆Γ2

R

. (4)

The power spectral density of the current, SI(ω) =
∫ ∞

0
dt cos(ωt)〈I(t)I(t + τ)〉, can be evaluated from rate

equations (3) utilizing MacDonald’s theorem, that re-
lates SI to the dispersion of charge accumulated on the
collector (right reservoir) [12]:

SI(ω) = e2ω/π

∫ ∞

0

dt sin(ωt)〈Ṅ2

R(t)〉 . (5)

The dispersion for the number of electrons in the right
reservoir can be found from the rate equations (3) as
〈N2

R〉 =
∑

n n
2(σn

aa + σn
bb + σn

cc). Here we quote the fi-
nal expression for spectral density SI(ω). The general
result is rather cumbersome. In the region of interest,
E ≥ ΓL,ΓR ≥ ∆ΓR, expanding SI in powers of ∆ΓR up
to O(∆Γ2

R), we obtain:

SI(ω) =
e2

π

2ΓLΓR

2ΓL + ΓR

4Γ2

L + Γ2

R + ω2

(2ΓL + ΓR)
2

+ ω2

+
8e2Γ3

LΓ2

R

πE2 (2ΓL + ΓR)
2

∆Γ2

R

Γ2

R + (ω − E)
2
. (6)

The spectrum (6) is shown in Fig. 2. The first term
in (6) is the shot noise approaching the “Schottky” limit
SI = e〈I〉/π for ω � ΓR,ΓL. For frequencies ω ≤ ΓL,ΓR

there is a dip in the spectrum - the result merely con-
sistent with Refs. [13]. The second term representing a
distinct peak arises due to spin-flip transitions between
the Zeeman-split sublevels in the dot. It is roughly of a
Lorentzian shape centered approximately at ω = E and
having width ΓR. A similar situation takes place in case
of a current tunneling through a double well structure
[14], where a peak in the fluctuation spectrum appears
to be located at the tunneling frequency for the dou-
ble well structure. The ratio of the peak’s height to the
noise pedestal (the signal to noise ratio) given by Eq. (6)
is S/N = 4Γ2

L∆Γ2

R/E
2ΓR(2ΓL + ΓR). The S to N ra-

tio can be significantly increased in heterostructures with
greater g1 − g2 difference, and thus greater spin transi-
tion rate ∆ΓR, or in asymmetric heterostructures with
ΓL � ΓR. From Eqs. (4), (6) one can evaluate the orders
of magnitude for parameters needed for observation of a
distinct peak in the fluctuations spectrum. The width of
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the peak in (6) is defined by value of current through the
structure, ΓR ' 〈I〉/e for ΓL > ΓR. Therefore to resolve
a peak due to spin flip transitions one needs to satisfy
condition E ≥ ΓR, though E should not be too great as
signal to noise ratio decreases with growth of E. Assum-
ing that the Zeeman splitting E is solely due to hyperfine
coupling, which is typically of order 10 - 102 MHz per
single nuclear spin, the current through the heterostruc-
ture must be sufficiently small, < 10 pA. However mea-
surement of magnetization produced by tens of nuclear
spins requires currents of order hundreds of pA, a number
within the capabilities of today’s single-electronics.
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Fig. 2: Power spectrum of tunneling current fluc-
tuations; Eq. (6). Here E = 50ΓR, ∆ΓR = 0.4ΓR,
ΓL = 20ΓR.

The peak’s broadening resulting from spin-lattice in-
teraction can be evaluated from the results of Ref. [15].
It was shown there that the zero-dimensional character
of the states in the dot leads to significant suppression
of spin-flip rate as compared to that of the delocalized
states, reducing the spin-flip rate to kHz for GaAs dots
at low temperatures and to even smaller number for Si
dots. Therefore the spin-lattice induced broadening vir-
tually plays no role in the proposed mechanism.

In summary we have proposed a new mechanism for
observation of local nuclear magnetization. We show that
the spectral density of the current fluctuations for our
system develops a distinct peak, whose location is deter-
mined by the Zeeman splitting of a discrete level in the
dot, while the width of the peak is directly related to
the value of the tunneling current. By polarizing nuclear
spins in the dot one can alter the magnitude of the Zee-
man splitting and therefore change the peak’s location.
The proposed experiment allows one to measure polar-
ization as well as depolarization rate of a small number
of nuclear spins. The later can be determined from rate
of the peak’s shift due to Zeeman frequency change be-
cause of the depolarization of the nuclei, provided that
the nuclear relaxation rate T−1

1n � ΓR. The nuclear T−1

1n

is significantly suppressed due to large difference in Zee-

man energies of electron and nuclear spins and thus one
can expect that the above condition is met.
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